khanat-opennel-code/code/nel/src/3d/water_height_map.cpp

761 lines
19 KiB
C++
Raw Normal View History

2010-05-06 00:08:41 +00:00
// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "std3d.h"
#include "nel/3d/water_height_map.h"
#include "nel/misc/common.h"
#include "nel/misc/debug.h"
#include "nel/misc/vector_2f.h"
#include <algorithm>
#include <cmath>
namespace NL3D
{
//===========================================================================================
CWaterHeightMap::CWaterHeightMap() : Date(-1),
_WavesEnabled(false),
_Damping(0.97f),
_FilterWeight(4),
_UnitSize(0.6f),
_WaveIntensity(0),
_WavePeriod(0),
_WaveImpulsionRadius(3),
_BorderWaves(true),
_EmitEllapsedTime(0),
_PropagateEllapsedTime(0),
_PropagationTime(0.10f),
_X(0),
_Y(0),
_NewX(0),
_NewY(0),
_CurrMap(0),
_Size(0)
{
}
//===========================================================================================
void CWaterHeightMap::setPropagationTime(float time)
{
_PropagationTime = time;
_PropagateEllapsedTime = 0;
for (uint k = 0; k < NumWaterMap; ++k)
{
clearArea(k, 0, 0, _Size << 1, _Size << 1);
}
}
//===========================================================================================
void CWaterHeightMap::updateUserPos()
{
const sint x = _NewX;
const sint y = _NewY;
nlassert(_Size != 0);
if ((uint) x == _X && (uint) y == _Y) return;
if ((uint) abs((long int)(x - _X)) < _Size && (uint) abs((long int)(y - _Y)) < _Size) // are there common pixels with the previous location?
{
// compute zone
sint XDivSize;
if ((sint) _X >= 0) XDivSize = (sint) _X / (sint) _Size;
else XDivSize = ((sint) (_X + 1) / (sint) _Size) - 1;
sint YDivSize;
if ((sint) _Y >= 0) YDivSize = (sint) _Y / (sint) _Size;
else YDivSize = ((sint) (_Y + 1) / (sint) _Size) - 1;
sint xDivSize;
if (x >= 0) xDivSize = (sint) x / (sint) _Size;
else xDivSize = ((sint) (x + 1) / (sint) _Size) - 1;
sint yDivSize;
if (y >= 0) yDivSize = (sint) y / (sint) _Size;
else yDivSize = ((sint) (y + 1) / (sint) _Size) - 1;
// different zone -> must decal datas
if (xDivSize != XDivSize || yDivSize != YDivSize)
{
sint left = std::max(x, (sint) _X);
sint top = std::max(y, (sint) _Y);
sint right = std::min(x + (sint) _Size, (sint) (_X + _Size));
sint bottom = std::min(y + (sint) _Size, (sint) (_Y + _Size));
sint offsetX, offsetY;
if (xDivSize != XDivSize)
{
offsetX = xDivSize < XDivSize ? _Size : -(sint)_Size;
}
else
{
offsetX = 0;
}
if (yDivSize != YDivSize)
{
offsetY = yDivSize < YDivSize ? _Size : -(sint)_Size;
}
else
{
offsetY = 0;
}
sint orgX = _Size * XDivSize;
sint orgY = _Size * YDivSize;
for (uint k = 0; k < NumWaterMap; ++k)
{
makeCpy(k, (uint) (left - orgX + offsetX) , (uint) (top - orgY + offsetY),
(uint) (left - orgX), (uint) (top - orgY),
(uint) (right - left), (uint) (bottom - top));
}
}
sint newOrgX = _Size * xDivSize;
sint newOrgY = _Size * yDivSize;
// clear new area
if (x == (sint) _X)
{
if (y < (sint) _Y)
{
// x, y, width, height
clearZone(x - newOrgX, y - newOrgY, _Size, _Y - y);
}
else
{
clearZone(x - newOrgX, y + _Size - newOrgY, _Size, y - _Y);
}
}
else
{
if (x > (sint) _X)
{
if (y == (sint) _Y)
{
clearZone(_X + _Size - newOrgX, y - newOrgY, x - _X, _Size);
}
else if (y < (sint) _Y)
{
clearZone(_X + _Size - newOrgX, _Y - newOrgY, x - _X, _Size - (_Y - y));
clearZone(x - newOrgX, y - newOrgY, _Size, _Y - y);
}
else
{
clearZone(_X + _Size - newOrgX, y - newOrgY, x - _X, _Size - (y - _Y));
clearZone(x - newOrgX, _Y + _Size - newOrgY, _Size, y - _Y);
}
}
else
{
if (y == (sint) _Y)
{
clearZone(x - newOrgX, y - newOrgY, _X - x, _Size);
}
else if (y < (sint) _Y)
{
clearZone(x - newOrgX, y - newOrgY, _Size, _Y - y);
clearZone(x - newOrgX, _Y - newOrgY, _X - x, _Size - (_Y - y));
}
else
{
clearZone(x - newOrgX, y - newOrgY, _X - x, _Size - (y -_Y));
clearZone(x - newOrgX, _Y + _Size - newOrgY, _Size, y - _Y);
}
}
}
}
else
{
// the new area has no common pixel's with the previous one
// clear the whole new area
uint px = _X % _Size;
uint py = _Y % _Size;
clearZone(px, py, _Size, _Size);
}
_X = (uint) x;
_Y = (uint) y;
}
//===========================================================================================
void CWaterHeightMap::animatePart(float startTime, float endTime)
{
if (endTime < 0.5f * _PropagationTime)
{
// perform propagation
propagate((uint) (_Size * 2.f * startTime / _PropagationTime), (uint) (_Size * 2.f * endTime / _PropagationTime));
}
else
{
// end propagation and start filter
if (startTime < 0.5f * _PropagationTime)
{
propagate((uint) (_Size * 2.f * startTime / _PropagationTime), _Size);
filter(0, (uint) (_Size * 2.f * (endTime / _PropagationTime - 0.5f)));
}
else
{
filter((uint) (_Size * 2.f * (startTime / _PropagationTime - 0.5f)), (uint) (_Size * 2.f * (endTime / _PropagationTime - 0.5f)));
}
}
}
//===========================================================================================
void CWaterHeightMap::animate(float deltaT)
{
if (deltaT < 0) deltaT = 0;
if (deltaT > _PropagationTime)
{
animatePart(0, _PropagationTime);
swapBuffers(deltaT);
_PropagateEllapsedTime = 0;
}
else
{
const float endTime = _PropagateEllapsedTime + deltaT;
const float startTime = _PropagateEllapsedTime;
if (endTime < _PropagationTime)
{
animatePart(startTime, endTime);
_PropagateEllapsedTime = endTime;
}
else
{
animatePart(startTime, _PropagationTime);
swapBuffers(deltaT);
//animatePart(0, endTime - _PropagationTime);
_PropagateEllapsedTime = 0 /*endTime - _PropagationTime*/;
}
}
animateWaves(deltaT);
}
//===========================================================================================
void CWaterHeightMap::setSize(uint32 size)
{
nlassert(size > 4);
_Size = size;
for (uint k = 0; k < NumWaterMap; ++k)
{
_Map[k].resize(4 * _Size * _Size);
clearArea(k, 0, 0, _Size << 1, _Size << 1);
}
//_Grad.resize(4 * _Size * _Size);
}
//===========================================================================================
void CWaterHeightMap::makeCpy(uint buffer, uint dX, uint dY, uint sX, uint sY, uint width, uint height)
{
if (width == 0 || height == 0) return;
nlassert(dX <= (2 * _Size));
nlassert(dY <= (2 * _Size));
nlassert(sX <= (2 * _Size));
nlassert(sY <= (2 * _Size));
nlassert(dX + width <= 2 * _Size);
nlassert(sX + width <= 2 * _Size);
nlassert(dY + height <= 2 * _Size);
nlassert(sY + height <= 2 * _Size);
sint stepY;
float *src, *dest;
const sint stride = _Size << 1;
if (dY <= sY)
{
stepY = stride;
src = &_Map[buffer][sX + sY * stride];
dest = &_Map[buffer][dX + dY * stride];
}
else
{
stepY = -stride;
src = &_Map[buffer][sX + (sY + height - 1) * stride];
dest = &_Map[buffer][dX + (dY + height - 1) * stride];
}
sint k = height;
do
{
if (dest < src)
{
std::copy(src, src + width, dest);
}
else
{
float *rSrc = src + width;
float *rDest = dest + width;
do
{
--rSrc;
--rDest;
*rDest = *rSrc;
}
while (rSrc != src);
}
src += stepY;
dest += stepY;
}
while (--k);
}
//===========================================================================================
void CWaterHeightMap::setUserPos(sint x, sint y)
{
_NewX = x;
_NewY = y;
}
//===========================================================================================
void CWaterHeightMap::getUserPos(sint &x, sint &y) const
{
x = (sint) _X; y = (sint) _Y;
}
//===========================================================================================
void CWaterHeightMap::propagate(uint start, uint end)
{
start = std::max(1u, start);
end = std::min((uint) (_Size - 1), end);
const float damping = _Damping;
clearBorder(0);
clearBorder(1);
nlassert(_Size != 0);
sint x, y;
uint px = _X % _Size;
uint py = _Y % _Size;
sint offset = px + 1 + ((py + start) * (_Size << 1));
//nlinfo("%d, %d, %d", (_CurrMap + (NumWaterMap - 1)) % NumWaterMap, _CurrMap,
float *buf2 = &_Map[ (_CurrMap + (NumWaterMap - 1)) % NumWaterMap][offset];
float *buf1 = &_Map[_CurrMap][offset];
float *dest = &_Map[(_CurrMap + 1) % NumWaterMap][offset];
const sint sizeX2 = _Size << 1;
y = end - start;
if (y <= 0) return;
do
{
x = _Size - 2;
do
{
*dest = damping * ( 0.5f * (buf1[1] + buf1[-1] + buf1[sizeX2] + buf1[- sizeX2]) - *buf2);
++buf1;
++buf2;
++dest;
}
while (--x);
buf1 = buf1 + _Size + 2;
buf2 = buf2 + _Size + 2;
dest = dest + _Size + 2;
}
while (--y);
}
//===========================================================================================
void CWaterHeightMap::filter(uint start, uint end)
{
start = std::max(1u, start);
end = std::min((uint) (_Size - 1), end);
const float blurCoeff = _FilterWeight;
nlassert(_Size != 0);
sint x, y;
uint px = _X % _Size;
uint py = _Y % _Size;
sint offset = px + 1 + ((py + start) * (_Size << 1));
float *buf = &_Map[ (_CurrMap + 1) % NumWaterMap ][offset];
//NLMISC::CVector2f *ptGrad = &_Grad[offset];
y = end - start;
if (y <= 0) return;
const float totalBlurCoeff = (1.f / (4.f + blurCoeff));
const sint sizeX2 = _Size << 1;
do
{
x = _Size - 2;
do
{
*buf = totalBlurCoeff * (*buf * blurCoeff
+ buf[1]
+ buf[-1]
+ buf[sizeX2]
+ buf[- sizeX2]
);
// compute gradient
/*ptGrad->x = buf[1] - buf[- 1];
ptGrad->y = buf[sizeX2] - buf[- sizeX2];*/
++buf;
//++ptGrad;
}
while (--x);
buf += _Size + 2;
//ptGrad += _Size + 2;
}
while (--y);
}
//===========================================================================================
void CWaterHeightMap::animateWaves(float deltaT)
{
if (_WavesEnabled)
{
uint numWaves;
if (_WavePeriod == 0)
{
numWaves = 1;
}
else
{
_EmitEllapsedTime += deltaT;
if (_EmitEllapsedTime > _WavePeriod)
{
numWaves = (uint) (_EmitEllapsedTime / _WavePeriod);
_EmitEllapsedTime -= numWaves * _WavePeriod;
if (numWaves > 10) numWaves = 10;
}
else
{
numWaves = 0;
}
}
uint k;
// generate automatic waves
if (!_BorderWaves)
{
if (_WaveIntensity != 0)
{
for (k = 0; k < numWaves; ++k)
{
perturbate(_NewX + rand() % _Size, _NewY + rand() % _Size, _WaveImpulsionRadius, _WaveIntensity);
}
}
}
else
{
switch(rand() & 3) // choose a random border
{
case 0: // top border
for (k = 0; k < numWaves; ++k)
{
perturbate(_NewX + (uint) rand() % _Size, _NewY, _WaveImpulsionRadius, _WaveIntensity);
}
break;
case 1: // bottom border
for (k = 0; k < numWaves; ++k)
{
perturbate(_NewX + (uint) rand() % _Size, _NewY + _Size - 1, _WaveImpulsionRadius, _WaveIntensity);
}
break;
case 2: // right border
for (k = 0; k < numWaves; ++k)
{
perturbate(_NewX + _Size - 1, _NewY + (uint) rand() % _Size, _WaveImpulsionRadius, _WaveIntensity);
}
break;
case 3: // left border
for (k = 0; k < numWaves; ++k)
{
perturbate(_NewX, _NewY + (uint) rand() % _Size, _WaveImpulsionRadius, _WaveIntensity);
}
break;
}
}
}
}
//===========================================================================================
void CWaterHeightMap::swapBuffers(float deltaT)
{
updateUserPos();
_CurrMap = (_CurrMap + 1) % NumWaterMap;
}
//===========================================================================================
void CWaterHeightMap::clearZone(sint x, sint y, sint width, sint height)
{
for (uint k = 0; k < NumWaterMap; ++k)
{
clearArea(k, x, y, width, height);
}
}
//===========================================================================================
void CWaterHeightMap::clearArea(uint8 currMap, sint x, sint y, sint width, sint height)
{
nlassert(_Size > 1);
nlassert(width >= 0);
nlassert(height >= 0);
uint sizex2 = _Size << 1;
if (x < 0)
{
width += x;
x = 0;
if (width <= 0) return;
}
if (y < 0)
{
height += y;
y = 0;
if (height <= 0) return;
}
if (x + width > (sint) sizex2)
{
width = width - (x + width - sizex2);
}
if (y + height > (sint) sizex2)
{
height = height - (y + height - sizex2);
}
float *dest = &*(_Map[ currMap ].begin() + x + (_Size << 1) * y);
do
{
std::fill(dest, dest + width, 0.f);
dest += (_Size << 1);
}
while (-- height);
}
//===========================================================================================
void CWaterHeightMap::perturbate(sint x, sint y, sint radius, float intensity)
{
nlassert(_Size != 0);
nlassert(radius > 0);
sint orgX = _X - _X % _Size;
sint orgY = _Y - _Y % _Size;
TFloatVect &map = _Map[(_CurrMap + 1) % NumWaterMap];
const uint sizeX2 = _Size << 1;
for (sint px = -radius + 1; px < radius; ++px)
{
for (sint py = -radius + 1; py < radius; ++py)
{
if ((uint) (x + px - orgX) < sizeX2
&& (uint) (y + py - orgY) < sizeX2)
{
float dist = ((float) radius - sqrtf((float) (px * px + py * py ))) / (float) radius;
float v = dist < radius ? intensity * cosf(dist * (float) NLMISC::Pi * 0.5f) : 0.f;
map[x + px - orgX + sizeX2 * (y + py - orgY)] = v;
}
}
}
}
//===========================================================================================
void CWaterHeightMap::perturbate(const NLMISC::CVector2f &pos, float strenght, float radius)
{
const float invUnitSize = 1.f / _UnitSize;
perturbate((sint) (pos.x * invUnitSize), (sint) (pos.y * invUnitSize), (sint) radius, strenght);
}
//===========================================================================================
void CWaterHeightMap::perturbatePoint(sint x, sint y, float intensity)
{
sint orgX = _X - _X % _Size;
sint orgY = _Y - _Y % _Size;
uint X = (uint) (x - orgX);
uint Y = (uint) (y - orgY);
if (X < (_Size << 1)
&& Y < (_Size << 1)
)
{
const uint sizex2 = _Size << 1;
TFloatVect &map = _Map[(_CurrMap + 1) % NumWaterMap];
map[X + sizex2 * Y] = intensity;
}
}
//===========================================================================================
void CWaterHeightMap::perturbatePoint(const NLMISC::CVector2f &pos, float strenght)
{
const float invUnitSize = 1.f / _UnitSize;
perturbatePoint((sint) (pos.x * invUnitSize), (sint) (pos.y * invUnitSize), strenght);
}
//===========================================================================================
void CWaterHeightMap::clearBorder(uint currMap)
{
float *map = &_Map[currMap][0];
uint sizex2 = _Size << 1;
// top and bottom
float *up = &map[(_X % _Size) + sizex2 * (_Y % _Size)];
float *curr = up;
const float *endUp = up + _Size;
const uint downOff = (_Size - 1) * sizex2;
do
{
*curr = curr[downOff] = 0.f;
++curr;
}
while (curr != endUp);
// right and left
curr = up;
const float *endLeft = up + downOff;
const uint rightOff = _Size - 1;
do
{
*curr = curr[rightOff] = 0.f;
curr += sizex2;
}
while (curr != endLeft);
}
//===========================================================================================
void CWaterHeightMap::setWaves(float intensity, float period, uint radius, bool border)
{
_WaveIntensity = intensity;
_WavePeriod = period;
_WaveImpulsionRadius = radius;
_BorderWaves = border;
}
//===========================================================================================
void CWaterHeightMap::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
f.xmlPushBegin("WaterHeightMap");
f.xmlSetAttrib ("NAME") ;
f.serial (_Name);
f.xmlPushEnd();
(void)f.serialVersion(0);
f.xmlSerial(_Size, "SIZE");
if (f.isReading())
{
setSize(_Size);
}
f.xmlSerial(_Damping, "DAMPING");
f.xmlSerial(_FilterWeight, "FILTER_WEIGHT");
f.xmlSerial(_UnitSize, "WATER_UNIT_SIZE");
f.xmlSerial(_WavesEnabled, "WavesEnabled");
if (_WavesEnabled)
{
f.xmlPush("WavesParams");
f.xmlSerial(_WaveIntensity, "WAVE_INTENSITY");
f.xmlSerial(_WavePeriod, "WAVE_PERIOD");
f.xmlSerial(_WaveImpulsionRadius, "WAVE_IMPULSION_RADIUS");
f.xmlSerial(_BorderWaves, "BORDER_WAVES");
f.xmlSerial(_PropagationTime, "PROPAGATION_TIME");
f.xmlPop();
}
f.xmlPop();
}
//*** perform a bilinear on 4 values
// 0---1
// | |
// 3---2
static float inline BilinFilter(float v0, float v1, float v2, float v3, float u, float v)
{
const float g = v * v3 + (1.f - v) * v0;
const float h = v * v2 + (1.f - v) * v1;
return u * h + (1.f - u) * g;
}
//===========================================================================================
float CWaterHeightMap::getHeight(const NLMISC::CVector2f &pos)
{
const float invUnitSize = 1.f / _UnitSize;
const float xPos = invUnitSize * pos.x; // position in map space
const float yPos = invUnitSize * pos.y; // position in map space
if ((uint) xPos - _X < _Size - 1
&& (uint) yPos - _Y < _Size - 1
)
{
const sint orgX = _X - _X % _Size;
const sint orgY = _Y - _Y % _Size;
const uint sizeX2 = _Size << 1;
const sint fxPos = (sint) floorf(xPos);
const sint fyPos = (sint) floorf(yPos);
const float deltaU = xPos - fxPos;
const float deltaV = yPos - fyPos;
const uint offset = (uint) fxPos - orgX + sizeX2 * ( (uint) fyPos - orgY);
const float lambda = getBufferRatio();
const float *map1 = getPrevPointer();
const float *map2 = getPointer();
return BilinFilter(lambda * map2[offset] + (1.f - lambda) * map1[offset ], // top left
lambda * map2[offset + 1] + (1.f - lambda) * map1[offset + 1], // top right
lambda * map2[offset + sizeX2 + 1] + (1.f - lambda) * map1[offset + sizeX2 + 1], // bottom right
lambda * map2[offset + sizeX2 ] + (1.f - lambda) * map1[offset + sizeX2 ], // bottom left
deltaU,
deltaV
);
}
else return 0;
}
} // NL3D