khanat-opennel-code/code/nel/src/3d/patch_lightmap.cpp

2043 lines
56 KiB
C++
Raw Normal View History

2010-05-06 00:08:41 +00:00
// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "std3d.h"
#include "nel/3d/patch.h"
#include "nel/3d/tessellation.h"
#include "nel/3d/bezier_patch.h"
#include "nel/3d/zone.h"
#include "nel/3d/landscape.h"
#include "nel/misc/vector.h"
#include "nel/misc/common.h"
#include "nel/3d/patchuv_locator.h"
#include "nel/3d/vegetable_manager.h"
#include "nel/misc/fast_floor.h"
#include "nel/3d/light_influence_interpolator.h"
#include "nel/3d/patchdlm_context.h"
using namespace std;
using namespace NLMISC;
namespace NL3D
{
// ***************************************************************************
// Precalc table used to decompress shadow map
// NB: if you want to change thoses values, see unpackLumelBlock, cause hardcoded.
static const uint NL3DDecompressLumelFactor0Case0[8]=
{
7, 0, 6, 5, 4, 3, 2, 1
};
static const uint NL3DDecompressLumelFactor1Case0[8]=
{
0, 7, 1, 2, 3, 4, 5, 6
};
static const uint NL3DDecompressLumelFactor0Case1[6]=
{
5, 0, 4, 3, 2, 1,
};
static const uint NL3DDecompressLumelFactor1Case1[6]=
{
0, 5, 1, 2, 3, 4,
};
// ***************************************************************************
void CPatch::unpackLumelBlock (uint8 *dest, const uint8 *src)
{
// Take the two alpha values
uint alpha0=src[0];
uint alpha1=src[1];
// precompute the 8 possible values, for each possible code.
// ------------------
uint8 values[8];
// Case 0
if (alpha0>alpha1)
{
// unrolled, and hardcoded for faster compute
values[0]= alpha0;
values[1]= alpha1;
values[2]= (uint8) ( (alpha0*219 + alpha1*37 ) >>8 ) ; // 6*256/7
values[3]= (uint8) ( (alpha0*183 + alpha1*73 ) >>8 ) ; // 5*256/7
values[4]= (uint8) ( (alpha0*146 + alpha1*110) >>8 ) ; // 4*256/7
values[5]= (uint8) ( (alpha0*110 + alpha1*146) >>8 ) ; // 3*256/7
values[6]= (uint8) ( (alpha0*73 + alpha1*183) >>8 ) ; // 2*256/7
values[7]= (uint8) ( (alpha0*37 + alpha1*219) >>8 ) ; // 1*256/7
}
// Case 1
else
{
// unrolled, and hardcoded for faster compute
values[0]= alpha0;
values[1]= alpha1;
values[2]= (uint8) ( (alpha0*205 + alpha1*51 ) >>8 ) ; // 4*256/5
values[3]= (uint8) ( (alpha0*154 + alpha1*102) >>8 ) ; // 3*256/5
values[4]= (uint8) ( (alpha0*102 + alpha1*154) >>8 ) ; // 2*256/5
values[5]= (uint8) ( (alpha0*51 + alpha1*205) >>8 ) ; // 1*256/5
values[6]= 0;
values[7]= 255;
}
// For each pixel, set the value according to the code
// ------------------
uint block8Pixs[2];
// Split the 48 bits data in 2 24 bits pass.
block8Pixs[0]= ((uint)src[2]<<16) + ((uint)src[3]<<8) + ((uint)src[4]) ;
block8Pixs[1]= ((uint)src[5]<<16) + ((uint)src[6]<<8) + ((uint)src[7]) ;
// write all lumels
for(uint i=0; i<2; i++)
{
uint blockPix= block8Pixs[i];
// parse the 8 pixs, and write seq to dest
for(uint n=8; n>0; n--, dest++)
{
uint code= (blockPix>>21)&0x7;
// read LUT, and store
*dest= values[code];
// shift the block
blockPix<<= 3;
}
}
}
// ***************************************************************************
inline uint8 getUnpackLumelBlock (const uint8 *src, uint pixel)
{
// Offset of the bit
pixel*=3;
uint offset=(pixel>>3)+2;
uint bits=pixel&7;
// Uncompress 16 codes
uint code;
// Get the code
if (bits<=5)
code=(src[offset]>>(5-bits))&0x7;
else
code= ( (src[offset]<<(bits-5)) | (src[offset+1]>>(13-bits)) )&0x7;
// Case 0
if (src[0]>src[1])
{
// Decompress the data
return (uint8)((NL3DDecompressLumelFactor0Case0[code]*src[0]+NL3DDecompressLumelFactor1Case0[code]*src[1])/7);
}
// Case 1
else
{
// Decompress the data
if (code<6)
return (uint8)((NL3DDecompressLumelFactor0Case1[code]*src[0]+NL3DDecompressLumelFactor1Case1[code]*src[1])/5);
else if (code==6)
return 0;
else
return 255;
}
}
// ***************************************************************************
void CPatch::unpackShadowMap (uint8 *pLumelDest)
{
// Input of compresed data
uint8 *compressedData=&CompressedLumels[0];
// Number of lumel by lines
uint lumelCount=OrderS*NL_LUMEL_BY_TILE;
// Number of block in a line
nlassert ((lumelCount&0x3)==0);
uint numLumelBlock=lumelCount>>2;
// Number of line
uint lineCount=OrderT*NL_LUMEL_BY_TILE;
// Number of block line
nlassert ((lineCount&0x3)==0);
uint numLineBlock=lineCount>>2;
// Destination lumel block size
uint lumelDestBlockSize=4;
// Destination lumel line block size
uint lumelDestLineBlockSize=lumelCount*lumelDestBlockSize;
// Each line block
for (uint lineBlock=0; lineBlock<numLineBlock; lineBlock++)
{
uint countVx4=16;
// Block pointer
uint8 *blockLine=pLumelDest;
// Each lumel block
for (uint lumelBlock=0; lumelBlock<numLumelBlock; lumelBlock++)
{
// *** Unpack the block
uint countU=4;
// Destination lumel
uint8 *blockDest=blockLine;
// Temp block
uint8 block[4*4];
// Block unpacking...
unpackLumelBlock (block, compressedData);
// Copy the lumels
for (uint v=0; v<countVx4; v+=4)
{
for (uint u=0; u<countU; u++)
{
// Copy the lumel
blockDest[u]=block[v+u];
}
// Next line
blockDest+=lumelCount;
}
// Next source block
compressedData+=NL_BLOCK_LUMEL_COMPRESSED_SIZE;
// Next block on the line
blockLine+=lumelDestBlockSize;
}
// Next line of block
pLumelDest+=lumelDestLineBlockSize;
}
}
// ***************************************************************************
uint CPatch::evalLumelBlock (const uint8 *original, const uint8 *unCompressed, uint width, uint height)
{
// Sum
uint sum=0;
// Eval error for each..
for (uint v=0; v<height; v++)
for (uint u=0; u<width; u++)
{
sum += abs((sint)original[v*4+u]-(sint)unCompressed[v*4+u]);
}
// return the sum
return sum;
}
// ***************************************************************************
void CPatch::packLumelBlock (uint8 *dest, const uint8 *source, uint8 alpha0, uint8 alpha1)
{
// Precalc the height values..
uint8 value[8];
// For each value
uint i;
for (i=0; i<8; i++)
{
// Case 0 or 1 ?
if (alpha0>alpha1)
// Case 0
value[i]=(NL3DDecompressLumelFactor0Case0[i]*alpha0+NL3DDecompressLumelFactor1Case0[i]*alpha1)/7;
else
{
if (i<6)
value[i]=(NL3DDecompressLumelFactor0Case1[i]*alpha0+NL3DDecompressLumelFactor1Case1[i]*alpha1)/5;
else if (i==6)
value[i]=0;
else
value[i]=255;
}
}
// Store alpha value
dest[0]=alpha0;
dest[1]=alpha1;
// Clear dest codes
for (i=0; i<6; i++)
{
// Clear the code
dest[2+i]=0;
}
// For each original select the best
uint codeOffset=2;
sint codeShift=5;
for (i=0; i<16; i++)
{
// Best dist and code
uint bestDist=10000;
uint8 bestCode=0;
// Calc distance
for (uint code=0; code<8; code++)
{
// Distance from original value
uint dist=abs ((sint)(source[i])-(sint)(value[code]));
// The best ?
if (dist<bestDist)
{
// New best
bestDist=dist;
bestCode=code;
}
// Perfect, stop searching
if (dist==0)
break;
}
// Store the best
if (codeShift>=0)
dest[codeOffset]|=bestCode<<codeShift;
else
{
dest[codeOffset]|=bestCode>>(-codeShift);
dest[codeOffset+1]|=bestCode<<(8+codeShift);
}
// Next shift
codeShift-=3;
if (codeShift<=-3)
{
codeOffset++;
codeShift+=8;
}
}
}
// ***************************************************************************
void CPatch::getTileTileColors(uint ts, uint tt, CRGBA corners[4])
{
for(sint i=0;i<4;i++)
{
CTileColor &tcol= TileColors[ (tt+(i>>1))*(OrderS+1) + (ts+(i&1)) ];
CRGBA &col= corners[i];
col.set565 (tcol.Color565);
}
}
// ***************************************************************************
// bilinear at center of the pixels. x E [0, 3], y E [0, 3].
inline void bilinearColor(CRGBA corners[4], uint x, uint y, uint &R, uint &G, uint &B)
{
// Fast bilinear and modulate.
// hardcoded for 4 pixels.
nlassert(NL_LUMEL_BY_TILE==4);
// expand to be on center of pixel=> 1,3,5 or 7.
x= (x<<1)+1;
y= (y<<1)+1;
uint x1= 8-x;
uint y1= 8-y;
// compute weight factors.
uint xy= x*y;
uint x1y= x1*y;
uint xy1= x*y1;
uint x1y1= x1*y1;
// bilinear
// pix left top.
R = corners[0].R * x1y1;
G = corners[0].G * x1y1;
B = corners[0].B * x1y1;
// pix right top.
R+= corners[1].R * xy1;
G+= corners[1].G * xy1;
B+= corners[1].B * xy1;
// pix left bottom.
R+= corners[2].R * x1y;
G+= corners[2].G * x1y;
B+= corners[2].B * x1y;
// pix right bottom.
R+= corners[3].R * xy;
G+= corners[3].G * xy;
B+= corners[3].B * xy;
}
// ***************************************************************************
// bilinear at center of the pixels. x E [0, 3], y E [0, 3].
inline void bilinearColorAndModulate(CRGBA corners[4], uint x, uint y, CRGBA &res)
{
uint R, G, B;
bilinearColor(corners, x, y, R, G, B);
// modulate with input.
R *= res.R;
G *= res.G;
B *= res.B;
// R,G,B are on 14 bits
res.R = R >> 14;
res.G = G >> 14;
res.B = B >> 14;
}
// ***************************************************************************
// bilinear at center of the pixels. x E [0, 3], y E [0, 3].
inline void bilinearColorAndModulatex2(CRGBA corners[4], uint x, uint y, CRGBA &res)
{
uint R, G, B;
bilinearColor(corners, x, y, R, G, B);
// modulate with input.
R *= res.R;
G *= res.G;
B *= res.B;
// result not >> 14 but >> 13 and clamp from 0 to 255
R = R >> 13;
G = G >> 13;
B = B >> 13;
res.R = min (R, 255U);
res.G = min (G, 255U);
res.B = min (B, 255U);
}
// ***************************************************************************
// bilinear at center of the pixels. x E [0, 3], y E [0, 3].
inline void bilinearColorDiv2AndAdd(CRGBA corners[4], uint x, uint y, CRGBA &res)
{
uint R,G,B;
bilinearColor(corners, x, y, R, G, B);
// add with input. Resulting TLI must be on 7 bits.
R= (R>>7) + res.R;
G= (G>>7) + res.G;
B= (B>>7) + res.B;
R= min(R, 255U);
G= min(G, 255U);
B= min(B, 255U);
// result.
res.R= R;
res.G= G;
res.B= B;
}
// ***************************************************************************
// bilinear at center of the pixels. x E [0, 3], y E [0, 3].
inline void bilinearColorAndAdd(CRGBA corners[4], uint x, uint y, CRGBA &res)
{
uint R,G,B;
bilinearColor(corners, x, y, R, G, B);
// add with input. Resulting TLI must be on 7 bits.
R= (R>>6) + res.R;
G= (G>>6) + res.G;
B= (B>>6) + res.B;
R= min(R, 255U);
G= min(G, 255U);
B= min(B, 255U);
// result.
res.R= R;
res.G= G;
res.B= B;
}
// ***************************************************************************
void CPatch::modulateTileLightmapWithTileColors(uint ts, uint tt, CRGBA *dest, uint stride)
{
// Get the tileColors around this tile
CRGBA corners[4];
getTileTileColors(ts, tt, corners);
// For all lumel, bilinear.
uint x, y;
for(y=0; y<NL_LUMEL_BY_TILE; y++)
{
for(x=0; x<NL_LUMEL_BY_TILE; x++)
{
// compute this pixel, and modulate
bilinearColorAndModulatex2(corners, x, y, dest[y*stride + x]);
}
}
}
// ***************************************************************************
void CPatch::modulateTileLightmapEdgeWithTileColors(uint ts, uint tt, uint edge, CRGBA *dest, uint stride, bool inverse)
{
// Get the tileColors around this tile
CRGBA corners[4];
getTileTileColors(ts, tt, corners);
// get coordinate according to edge.
uint x=0,y=0;
switch(edge)
{
case 0: x= 0; break;
case 1: y= NL_LUMEL_BY_TILE-1; break;
case 2: x= NL_LUMEL_BY_TILE-1; break;
case 3: y= 0; break;
};
// For all lumel of the edge, bilinear.
uint i;
for(i=0; i<NL_LUMEL_BY_TILE; i++)
{
// if vertical edge
if( (edge&1)==0 ) y= i;
// else horizontal edge
else x= i;
// manage inverse.
uint where;
if(inverse) where= (NL_LUMEL_BY_TILE-1)-i;
else where= i;
// compute this pixel, and modulate
bilinearColorAndModulatex2(corners, x, y, dest[where*stride]);
}
}
// ***************************************************************************
void CPatch::modulateTileLightmapPixelWithTileColors(uint ts, uint tt, uint s, uint t, CRGBA *dest)
{
// Get the tileColors around this tile
CRGBA corners[4];
getTileTileColors(ts, tt, corners);
// compute this pixel, and modulate
bilinearColorAndModulatex2(corners, s, t, *dest);
}
// ***************************************************************************
void CPatch::computeTileLightmapAutomatic(uint ts, uint tt, CRGBA *dest, uint stride)
{
uint x, y;
for(y=0; y<NL_LUMEL_BY_TILE; y++)
{
for(x=0; x<NL_LUMEL_BY_TILE; x++)
{
// compute this pixel.
computeTileLightmapPixelAutomatic(ts, tt, x, y, dest+ y*stride + x);
}
}
}
// ***************************************************************************
void CPatch::computeTileLightmapEdgeAutomatic(uint ts, uint tt, uint edge, CRGBA *dest, uint stride, bool inverse)
{
// get coordinate according to edge.
uint x=0,y=0;
switch(edge)
{
case 0: x= 0; break;
case 1: y= NL_LUMEL_BY_TILE-1; break;
case 2: x= NL_LUMEL_BY_TILE-1; break;
case 3: y= 0; break;
};
uint i;
for(i=0; i<NL_LUMEL_BY_TILE; i++)
{
// if vertical edge
if( (edge&1)==0 ) y= i;
// else horizontal edge
else x= i;
// manage inverse.
uint where;
if(inverse) where= (NL_LUMEL_BY_TILE-1)-i;
else where= i;
// compute this pixel.
computeTileLightmapPixelAutomatic(ts, tt, x, y, dest+ where*stride);
}
}
// ***************************************************************************
void CPatch::computeTileLightmapPixelAutomatic(uint ts, uint tt, uint s, uint t, CRGBA *dest)
{
float u,v;
static const float lumelSize= 1.f/NL_LUMEL_BY_TILE;
// use 3 computeVertex to compute a normal. This is slow....
CVector p0, p1 ,p2;
// 1st vert. Top-left of the lumel.
u= (ts + s*lumelSize )/OrderS;
v= (tt + t*lumelSize )/OrderT;
p0= computeVertex(u, v);
// 2nd vert. Bottom-left of the lumel.
u= (ts + s*lumelSize )/OrderS;
v= (tt + (t+1)*lumelSize )/OrderT;
p1= computeVertex(u, v);
// 3rd vert. Center-Right of the lumel.
u= (ts + (s+1)*lumelSize )/OrderS;
v= (tt + (t+0.5f)*lumelSize )/OrderT;
p2= computeVertex(u, v);
// the normal.
CVector normal;
normal= (p1-p0)^(p2-p0);
normal.normalize();
// lighting.
float c= -normal*getLandscape()->getAutomaticLightDir();
c= max(c, 0.f);
sint ic;
#if defined(NL_OS_WINDOWS) && !defined(NL_NO_ASM) && defined(NL_USE_FASTFLOOR)
2010-05-06 00:08:41 +00:00
// FastFloor using fistp. Don't care convention.
float fc= c*256;
_asm
{
fld fc
fistp ic
}
#else
ic= (sint)floor(c*256);
#endif
clamp(ic, 0, 255);
// ambiant/diffuse lighting.
*dest= getLandscape()->getStaticLight()[ic];
}
// ***************************************************************************
void CPatch::getTileLumelmapPrecomputed(uint ts, uint tt, uint8 *dest, uint stride)
{
// Unpack the lumels
uint8 buffer[NL_LUMEL_BY_TILE*NL_LUMEL_BY_TILE];
unpackLumelBlock (buffer, &(CompressedLumels[(ts + (tt*OrderS))*NL_BLOCK_LUMEL_COMPRESSED_SIZE]));
// Retrun it
uint x, y;
for(y=0; y<NL_LUMEL_BY_TILE; y++)
{
for(x=0; x<NL_LUMEL_BY_TILE; x++)
{
// lumel
dest[y*stride + x]= buffer[x+(y<<NL_LUMEL_BY_TILE_SHIFT)];
}
}
}
// ***************************************************************************
void CPatch::getTileLumelmapPixelPrecomputed(uint ts, uint tt, uint s, uint t, uint8 &dest) const
{
// Return the lumel
dest= getUnpackLumelBlock (&(CompressedLumels[(ts + (tt*OrderS))*NL_BLOCK_LUMEL_COMPRESSED_SIZE]), s+(t<<2));
}
// ***************************************************************************
void CPatch::computeTileLightmapPrecomputed(uint ts, uint tt, CRGBA *dest, uint stride)
{
// Lumel table
const CRGBA* colorTable=getLandscape ()->getStaticLight ();
// Unpack the lumels
uint8 buffer[NL_LUMEL_BY_TILE*NL_LUMEL_BY_TILE];
unpackLumelBlock (buffer, &(CompressedLumels[(ts + (tt*OrderS))*NL_BLOCK_LUMEL_COMPRESSED_SIZE]));
// Retrun it
uint x, y;
for(y=0; y<NL_LUMEL_BY_TILE; y++)
{
for(x=0; x<NL_LUMEL_BY_TILE; x++)
{
// lumel
dest[y*stride + x]=colorTable[buffer[x+(y<<NL_LUMEL_BY_TILE_SHIFT)]];
}
}
}
// ***************************************************************************
static uint NL3DPixelStartLumel[4]={0, 4*3, 3, 0};
static uint NL3DDeltaLumel[4]={4, 1, 4, 1};
// ***************************************************************************
void CPatch::computeTileLightmapEdgePrecomputed(uint ts, uint tt, uint edge, CRGBA *dest, uint stride, bool inverse)
{
// Lumel table
const CRGBA* colorTable=getLandscape ()->getStaticLight ();
// Witch corner to start ?
uint pixel=NL3DPixelStartLumel[edge];
uint delta=NL3DDeltaLumel[edge];
// For each lumels
const uint8 *src=&(CompressedLumels[(ts + (tt*OrderS))*NL_BLOCK_LUMEL_COMPRESSED_SIZE]);
uint x;
if (inverse)
{
uint inverseStride=stride*(4-1);
for(x=0; x<4; x++)
{
// lumel
dest[inverseStride-x*stride]=colorTable[getUnpackLumelBlock (src, pixel)];
pixel+=delta;
}
}
else
{
for(x=0; x<4; x++)
{
// lumel
dest[x*stride]=colorTable[getUnpackLumelBlock (src, pixel)];
pixel+=delta;
}
}
}
// ***************************************************************************
void CPatch::computeTileLightmapPixelPrecomputed(uint ts, uint tt, uint s, uint t, CRGBA *dest)
{
// Lumel table
const CRGBA* colorTable=getLandscape ()->getStaticLight ();
// Return the lumel
*dest=colorTable[getUnpackLumelBlock (&(CompressedLumels[(ts + (tt*OrderS))*NL_BLOCK_LUMEL_COMPRESSED_SIZE]), s+(t<<2))];
}
// ***************************************************************************
void CPatch::computeTileLightmap(uint ts, uint tt, CRGBA *dest, uint stride)
{
if(getLandscape()->getAutomaticLighting())
computeTileLightmapAutomatic(ts, tt, dest, stride);
else
{
computeTileLightmapPrecomputed(ts, tt, dest, stride);
// Add the inlufence of TLI.
addTileLightmapWithTLI(ts, tt, dest, stride);
}
// modulate dest with tileColors (at center of lumels).
modulateTileLightmapWithTileColors(ts, tt, dest, stride);
}
// ***************************************************************************
void CPatch::computeTileLightmapEdge(uint ts, uint tt, uint edge, CRGBA *dest, uint stride, bool inverse)
{
if(getLandscape()->getAutomaticLighting())
computeTileLightmapEdgeAutomatic(ts, tt, edge, dest, stride, inverse);
else
{
computeTileLightmapEdgePrecomputed(ts, tt, edge, dest, stride, inverse);
// Add the inlufence of TLI.
addTileLightmapEdgeWithTLI(ts, tt, edge, dest, stride, inverse);
}
// modulate dest with tileColors (at center of lumels).
modulateTileLightmapEdgeWithTileColors(ts, tt, edge, dest, stride, inverse);
}
// ***************************************************************************
void CPatch::computeTileLightmapPixel(uint ts, uint tt, uint s, uint t, CRGBA *dest)
{
if(getLandscape()->getAutomaticLighting())
computeTileLightmapPixelAutomatic(ts, tt, s, t, dest);
else
{
computeTileLightmapPixelPrecomputed(ts, tt, s, t, dest);
// Add the inlufence of TLI.
addTileLightmapPixelWithTLI(ts, tt, s, t, dest);
}
// modulate dest with tileColors (at center of lumels).
modulateTileLightmapPixelWithTileColors(ts, tt, s, t, dest);
}
// ***************************************************************************
void CPatch::computeTileLightmapPixelAroundCorner(const CVector2f &stIn, CRGBA *dest, bool lookAround)
{
bool mustLookOnNeighbor= false;
// Get the Uv, in [0,Order?*NL_LUMEL_BY_TILE] basis (ie lumel basis).
sint u, v;
u= (sint)floor(stIn.x*NL_LUMEL_BY_TILE);
v= (sint)floor(stIn.y*NL_LUMEL_BY_TILE);
// if allowed, try to go on neighbor patch.
if(lookAround)
{
// try to know if we must go on a neighbor patch (maybe false with bind X/1).
if( u<0 || u>=OrderS*NL_LUMEL_BY_TILE || v<0 || v>=OrderT*NL_LUMEL_BY_TILE)
mustLookOnNeighbor= true;
}
// If we must get (if possible) the pixel in the current patch, do it.
if(!mustLookOnNeighbor)
{
// if out this patch, abort.
if( u<0 || u>=OrderS*NL_LUMEL_BY_TILE || v<0 || v>=OrderT*NL_LUMEL_BY_TILE)
return;
else
{
// get this pixel.
computeTileLightmapPixel(u>>NL_LUMEL_BY_TILE_SHIFT, v>>NL_LUMEL_BY_TILE_SHIFT, u&(NL_LUMEL_BY_TILE-1), v&(NL_LUMEL_BY_TILE-1), dest);
}
}
// else get from the best neighbor patch.
else
{
// choose against which edge we must find the pixel.
uint edge=0;
if(u<0) edge=0;
else if(v>=OrderT*NL_LUMEL_BY_TILE) edge=1;
else if(u>=OrderS*NL_LUMEL_BY_TILE) edge=2;
else if(v<0) edge=3;
// retrieve info on neighbor.
CBindInfo bindInfo;
getBindNeighbor(edge, bindInfo);
// if neighbor present.
if(bindInfo.Zone)
{
CVector2f stOut;
CPatch *patchOut;
uint patchId;
// Ok, search uv on this patch.
CPatchUVLocator uvLocator;
uvLocator.build(this, edge, bindInfo);
patchId= uvLocator.selectPatch(stIn);
uvLocator.locateUV(stIn, patchId, patchOut, stOut);
// retry only one time, so at next call, must find the data IN htis patch (else abort).
patchOut->computeTileLightmapPixelAroundCorner(stOut, dest, false);
}
}
}
// ***************************************************************************
void CPatch::computeNearBlockLightmap(uint uts, uint utt, CRGBA *lightText)
{
sint ts= uts;
sint tt= utt;
// hardcoded for 10x10.
nlassert(NL_TILE_LIGHTMAP_SIZE==10);
CRGBA *dest;
uint edge;
uint corner;
// Compute center of the TessBlock: the 2x2 tiles.
//=================
// compute tile 0,0 of the tessBlock. must decal of 1 pixel.
dest= lightText+NL_TILE_LIGHTMAP_SIZE+1;
computeTileLightmap(ts, tt, dest, NL_TILE_LIGHTMAP_SIZE);
// compute tile 1,0 of the tessBlock. must decal of 1 pixel.
dest= lightText + NL_LUMEL_BY_TILE + NL_TILE_LIGHTMAP_SIZE+1 ;
computeTileLightmap(ts+1, tt, dest, NL_TILE_LIGHTMAP_SIZE);
// compute tile 0,1 of the tessBlock. must decal of 1 pixel.
dest= lightText + NL_LUMEL_BY_TILE*NL_TILE_LIGHTMAP_SIZE + NL_TILE_LIGHTMAP_SIZE+1 ;
computeTileLightmap(ts, tt+1, dest, NL_TILE_LIGHTMAP_SIZE);
// compute tile 1,1 of the tessBlock. must decal of 1 pixel.
dest= lightText + NL_LUMEL_BY_TILE*NL_TILE_LIGHTMAP_SIZE + NL_LUMEL_BY_TILE + NL_TILE_LIGHTMAP_SIZE+1 ;
computeTileLightmap(ts+1, tt+1, dest, NL_TILE_LIGHTMAP_SIZE);
// Compute edges of the TessBlock.
//=================
bool edgeBorder[4];
// where are we on a border of a patch??
edgeBorder[0]= ( ts==0 );
edgeBorder[1]= ( tt == OrderT-2 );
edgeBorder[2]= ( ts == OrderS-2 );
edgeBorder[3]= ( tt==0 );
// For all edges.
for(edge=0; edge<4; edge++)
{
// compute dest info.
//==============
// Are we on a vertical edge or horizontal edge??
uint stride= (edge&1)==0? NL_TILE_LIGHTMAP_SIZE : 1;
// must compute on which tile we must find info.
sint decalS=0;
sint decalT=0;
// and must compute ptr, where we store the result of the edge.
switch(edge)
{
case 0: decalS=-1; dest= lightText + 0 + NL_TILE_LIGHTMAP_SIZE; break;
case 1: decalT= 2; dest= lightText + 1 + (NL_TILE_LIGHTMAP_SIZE-1)*NL_TILE_LIGHTMAP_SIZE; break;
case 2: decalS= 2; dest= lightText + (NL_TILE_LIGHTMAP_SIZE-1) + NL_TILE_LIGHTMAP_SIZE; break;
case 3: decalT=-1; dest= lightText + 1; break;
};
// compute the second tile dest info.
CRGBA *dest2;
sint decalS2;
sint decalT2;
// if vertical edge.
if((edge&1)==0)
{
// Next Y tile.
dest2= dest + NL_LUMEL_BY_TILE*NL_TILE_LIGHTMAP_SIZE;
decalS2= decalS;
decalT2= decalT+1;
}
else
{
// Next X tile.
dest2= dest + NL_LUMEL_BY_TILE;
decalS2= decalS+1;
decalT2= decalT;
}
// If we are not on a border of a patch, just compute on the interior of the patch.
//==============
if(!edgeBorder[edge])
{
// find the result on the mirrored border of us. First tile.
computeTileLightmapEdge(ts+decalS, tt+decalT, (edge+2)&3, dest, stride, false);
// find the result on the mirrored border of us. Second Tile.
computeTileLightmapEdge(ts+decalS2, tt+decalT2, (edge+2)&3, dest2, stride, false);
}
// else, slightly complicated, must find the result on neighbor patch(s).
//==============
else
{
CPatchUVLocator uvLocator;
CBindInfo bindInfo;
bindInfo.Zone= NULL;
// if smoothed edge, search the neighbor.
if(getSmoothFlag(edge))
{
// Build the bindInfo against this edge.
getBindNeighbor(edge, bindInfo);
// if ok, build the uv info against this edge.
if(bindInfo.Zone)
{
uvLocator.build(this, edge, bindInfo);
// if there is not same tile order across the edge, invalidate the smooth.
// This is rare, so don't bother.
if(!uvLocator.sameEdgeOrder())
bindInfo.Zone= NULL;
}
}
// Fast reject: if no neighbor, or if not smoothed, or if edge order pb, just copy from my interior.
if(!bindInfo.Zone)
{
CRGBA *src=0;
switch(edge)
{
case 0: src= dest + 1; break;
case 1: src= dest - NL_TILE_LIGHTMAP_SIZE; break;
case 2: src= dest - 1; break;
case 3: src= dest + NL_TILE_LIGHTMAP_SIZE; break;
};
// fill the NL_LUMEL_BY_TILE*2 (8) pixels.
for(uint n=NL_LUMEL_BY_TILE*2; n>0; n--, src+=stride, dest+=stride)
*dest= *src;
}
// else, ok, get from neighbor.
else
{
CVector2f stIn, stOut;
CPatch *patchOut;
uint patchId;
uint edgeOut;
bool inverse;
// First Tile.
//=========
// to remove floor pbs, take the center of the wanted tile.
stIn.set(ts+decalS + 0.5f, tt+decalT + 0.5f);
patchId= uvLocator.selectPatch(stIn);
uvLocator.locateUV(stIn, patchId, patchOut, stOut);
// must find what edge on neighbor to compute, and if we must inverse (swap) result.
// easy: the edge of the tile is the edge of the patch where we are binded.
edgeOut= bindInfo.Edge[patchId];
// edge0 is oriented in T increasing order. edge1 is oriented in S increasing order.
// edge2 is oriented in T decreasing order. edge3 is oriented in S decreasing order.
// inverse is true if same sens on both edges (because of mirroring, sens should be different).
inverse= (edge>>1)==(edgeOut>>1);
// compute the lightmap on the edge of the neighbor.
patchOut->computeTileLightmapEdge((sint)floor(stOut.x), (sint)floor(stOut.y), edgeOut, dest, stride, inverse);
// Second Tile.
//=========
// same reasoning.
stIn.set(ts+decalS2 + 0.5f, tt+decalT2 + 0.5f);
patchId= uvLocator.selectPatch(stIn);
uvLocator.locateUV(stIn, patchId, patchOut, stOut);
edgeOut= bindInfo.Edge[patchId];
inverse= (edge>>1)==(edgeOut>>1);
patchOut->computeTileLightmapEdge((sint)floor(stOut.x), (sint)floor(stOut.y), edgeOut, dest2, stride, inverse);
}
}
}
// Compute corners of the TessBlock.
//=================
bool cornerOnPatchEdge[4];
bool cornerOnPatchCorner[4];
// where are we on a edge border of a patch??
cornerOnPatchEdge[0]= edgeBorder[3] != edgeBorder[0];
cornerOnPatchEdge[1]= edgeBorder[0] != edgeBorder[1];
cornerOnPatchEdge[2]= edgeBorder[1] != edgeBorder[2];
cornerOnPatchEdge[3]= edgeBorder[2] != edgeBorder[3];
// where are we on a corner border of a patch??
cornerOnPatchCorner[0]= edgeBorder[3] && edgeBorder[0];
cornerOnPatchCorner[1]= edgeBorder[0] && edgeBorder[1];
cornerOnPatchCorner[2]= edgeBorder[1] && edgeBorder[2];
cornerOnPatchCorner[3]= edgeBorder[2] && edgeBorder[3];
// For all corners.
for(corner=0; corner<4; corner++)
{
// compute dest info.
//==============
// must compute on which tile we must find info.
sint decalS=0;
sint decalT=0;
// and must compute ptr, where we store the result of the corner.
switch(corner)
{
case 0: decalS=-1; decalT=-1; dest= lightText + 0 + 0; break;
case 1: decalS=-1; decalT= 2; dest= lightText + 0 + (NL_TILE_LIGHTMAP_SIZE-1)*NL_TILE_LIGHTMAP_SIZE; break;
case 2: decalS= 2; decalT= 2; dest= lightText + (NL_TILE_LIGHTMAP_SIZE-1) + (NL_TILE_LIGHTMAP_SIZE-1)*NL_TILE_LIGHTMAP_SIZE; break;
case 3: decalS= 2; decalT=-1; dest= lightText + (NL_TILE_LIGHTMAP_SIZE-1) + 0; break;
};
// If we are not on a border of a patch, just compute on the interior of the patch.
//==============
// if the corner is IN the patch.
if(!cornerOnPatchCorner[corner] && !cornerOnPatchEdge[corner])
{
// what pixel to read.
uint subS, subT;
if(decalS==-1) subS= NL_LUMEL_BY_TILE-1;
else subS= 0;
if(decalT==-1) subT= NL_LUMEL_BY_TILE-1;
else subT= 0;
// find the result on the corner of the neighbor tile.
computeTileLightmapPixel(ts+decalS, tt+decalT, subS, subT, dest);
}
else
{
// By default, fill the corner with our interior corner. Because other methods may fail.
CRGBA *src=0;
switch(corner)
{
case 0: src= dest + 1 + NL_TILE_LIGHTMAP_SIZE; break;
case 1: src= dest + 1 - NL_TILE_LIGHTMAP_SIZE; break;
case 2: src= dest - 1 - NL_TILE_LIGHTMAP_SIZE; break;
case 3: src= dest - 1 + NL_TILE_LIGHTMAP_SIZE; break;
};
// fill the pixel.
*dest= *src;
// get the coordinate of the corner, in our [0,Order] basis. get it at the center of the pixel.
CBindInfo bindInfo;
CPatchUVLocator uvLocator;
CVector2f stIn, stOut;
CPatch *patchOut;
uint patchId;
float decX, decY;
static const float lumelSize= 1.f/NL_LUMEL_BY_TILE;
static const float semiLumelSize= 0.5f*lumelSize;
if(decalS==-1) decX= - semiLumelSize;
else decX= 2+ semiLumelSize;
if(decalT==-1) decY= - semiLumelSize;
else decY= 2+ semiLumelSize;
stIn.set( ts+decX, tt+decY);
// if the corner is on One edge only of the patch.
if(cornerOnPatchEdge[corner])
{
// find the edge where to read this corner: hard edge after or before this corner.
if(edgeBorder[corner]) edge= corner;
else edge= (corner+4-1) & 3;
// if this edge is smoothed, find on neighbor.
if(getSmoothFlag(edge))
{
// retrieve neigbhor info.
getBindNeighbor(edge, bindInfo);
// if neighbor present.
if(bindInfo.Zone)
{
// Ok, search uv on this patch.
uvLocator.build(this, edge, bindInfo);
patchId= uvLocator.selectPatch(stIn);
uvLocator.locateUV(stIn, patchId, patchOut, stOut);
// Get the Uv, in [0,Order?*NL_LUMEL_BY_TILE] basis (ie lumel basis), and get from neighbor patch
sint u, v;
u= (sint)floor(stOut.x*NL_LUMEL_BY_TILE);
v= (sint)floor(stOut.y*NL_LUMEL_BY_TILE);
patchOut->computeTileLightmapPixel(u>>NL_LUMEL_BY_TILE_SHIFT, v>>NL_LUMEL_BY_TILE_SHIFT, u&(NL_LUMEL_BY_TILE-1), v&(NL_LUMEL_BY_TILE-1), dest);
}
}
// else we must still smooth with our lumel on this patch, so get it from neighbor on edge.
else
{
// first, clamp to our patch (recenter on the previous pixel)
if(stIn.x<0) stIn.x+= lumelSize;
else if(stIn.x>OrderS) stIn.x-= lumelSize;
else if(stIn.y<0) stIn.y+= lumelSize;
else if(stIn.y>OrderT) stIn.y-= lumelSize;
// Get the Uv, in [0,Order?*NL_LUMEL_BY_TILE] basis (ie lumel basis), and get from this patch
sint u, v;
u= (sint)floor(stIn.x*NL_LUMEL_BY_TILE);
v= (sint)floor(stIn.y*NL_LUMEL_BY_TILE);
computeTileLightmapPixel(u>>NL_LUMEL_BY_TILE_SHIFT, v>>NL_LUMEL_BY_TILE_SHIFT, u&(NL_LUMEL_BY_TILE-1), v&(NL_LUMEL_BY_TILE-1), dest);
}
}
// else it is on a corner of the patch.
else
{
// if the corner of the patch (same as tile corner) is smoothed, find on neighbor
if(getCornerSmoothFlag(corner))
{
// retrieve neigbhor info. NB: use edgeId=corner, (corner X is the start of the edge X)it works.
getBindNeighbor(corner, bindInfo);
// if neighbor present.
if(bindInfo.Zone)
{
// Ok, search uv on this patch.
uvLocator.build(this, corner, bindInfo);
patchId= uvLocator.selectPatch(stIn);
uvLocator.locateUV(stIn, patchId, patchOut, stOut);
// same reasoning as in computeDisplaceCornerSmooth(), must find the pixel on the neighbor
// of our neighbor. But the current corner may be a corner on a bind X/1. All is managed by doing
// this way.
patchOut->computeTileLightmapPixelAroundCorner(stOut, dest, true);
}
}
}
}
}
}
// ***************************************************************************
void CPatch::getTileLightMap(uint ts, uint tt, CPatchRdrPass *&rdrpass)
{
// TessBlocks must have been allocated.
nlassert(TessBlocks.size()!=0);
// get what tessBlock to use.
uint numtb, numtm;
computeTbTm(numtb, numtm, ts, tt);
CTessBlock &tessBlock= TessBlocks[numtb];
// If the lightmap Id has not been computed, compute it.
if(tessBlock.LightMapRefCount==0)
{
// Compute the lightmap texture, with help of TileColors, with neighboring info etc...
CRGBA lightText[NL_TILE_LIGHTMAP_SIZE*NL_TILE_LIGHTMAP_SIZE];
computeNearBlockLightmap(ts&(~1), tt&(~1), lightText);
// Create a rdrPass with this texture, donlod to Driver etc...
tessBlock.LightMapId= Zone->Landscape->getTileLightMap(lightText, rdrpass);
// store this rdrpass ptr.
tessBlock.LightMapRdrPass= rdrpass;
}
// We are using this 2x2 tiles lightmap.
tessBlock.LightMapRefCount++;
// get the rdrpass ptr of the tessBlock lightmap
rdrpass= tessBlock.LightMapRdrPass;
}
// ***************************************************************************
void CPatch::getTileLightMapUvInfo(uint ts, uint tt, CVector &uvScaleBias)
{
// TessBlocks must have been allocated.
nlassert(TessBlocks.size()!=0);
// get what tessBlock to use.
uint numtb, numtm;
computeTbTm(numtb, numtm, ts, tt);
CTessBlock &tessBlock= TessBlocks[numtb];
// Get the uvScaleBias for the tile 0,0 of the block.
Zone->Landscape->getTileLightMapUvInfo(tessBlock.LightMapId, uvScaleBias);
// Must increment the bias, for the good tile in the 2x2 block Lightmap.
uint tsDec= ts & 1;
uint ttDec= tt & 1;
uvScaleBias.x+= tsDec * uvScaleBias.z;
uvScaleBias.y+= ttDec * uvScaleBias.z;
}
// ***************************************************************************
void CPatch::releaseTileLightMap(uint ts, uint tt)
{
// TessBlocks must have been allocated.
nlassert(TessBlocks.size()!=0);
// get what tessBlock to use.
uint numtb, numtm;
computeTbTm(numtb, numtm, ts, tt);
CTessBlock &tessBlock= TessBlocks[numtb];
// If no more tileMaterial use this lightmap, release it.
nlassert(tessBlock.LightMapRefCount>0);
tessBlock.LightMapRefCount--;
if(tessBlock.LightMapRefCount==0)
{
Zone->Landscape->releaseTileLightMap(tessBlock.LightMapId);
}
}
// ***************************************************************************
void CPatch::packShadowMap (const uint8 *pLumelSrc)
{
// Number of lumel by lines
uint lumelCount=OrderS*NL_LUMEL_BY_TILE;
// Number of block in a line
nlassert ((lumelCount&0x3)==0);
uint numLumelBlock=lumelCount>>2;
// Number of line
uint lineCount=OrderT*NL_LUMEL_BY_TILE;
// Number of block line
nlassert ((lineCount&0x3)==0);
uint numLineBlock=lineCount>>2;
// Resize the compressed buffer
CompressedLumels.resize (numLumelBlock*numLineBlock*NL_BLOCK_LUMEL_COMPRESSED_SIZE);
// Input of compresed data
uint8 *compressedData=&CompressedLumels[0];
// Each line block
for (uint lineBlock=0; lineBlock<numLineBlock; lineBlock++)
{
// Block pointer
const uint8 *blockLine=pLumelSrc;
// Each lumel block
for (uint lumelBlock=0; lumelBlock<numLumelBlock; lumelBlock++)
{
// *** Unpack the block
uint countU;
// Last block ?
if (lumelBlock==numLumelBlock-1)
countU=lumelCount&3;
else
countU=4;
// Destination lumel
const uint8 *blockSrc=blockLine;
// Temp block
uint8 originalBlock[4*4];
// Copy the lumels in the bloc
for (uint v=0; v<NL_LUMEL_BY_TILE; v++)
{
for (uint u=0; u<NL_LUMEL_BY_TILE; u++)
{
// Copy the lumel
originalBlock[(v<<2)+u]=blockSrc[u];
}
// Next line
blockSrc+=lumelCount;
}
// Get min and max alpha
uint8 alphaMin=255;
uint8 alphaMax=0;
// Scan
for (uint i=0; i<16; i++)
{
// Min ?
if (originalBlock[i]<alphaMin)
alphaMin=originalBlock[i];
if (originalBlock[i]>alphaMax)
alphaMax=originalBlock[i];
}
// *** Try to compress by 2 methods
// Blcok uncompressed
uint8 uncompressedBlock[4*4];
// Pack the block
packLumelBlock (compressedData, originalBlock, alphaMin, alphaMax);
// Unpack the block
unpackLumelBlock (uncompressedBlock, compressedData);
// Eval error
uint firstMethod=evalLumelBlock (originalBlock, uncompressedBlock, NL_LUMEL_BY_TILE, NL_LUMEL_BY_TILE);
// second compression
uint8 secondCompressedBlock[NL_BLOCK_LUMEL_COMPRESSED_SIZE];
packLumelBlock (secondCompressedBlock, originalBlock, alphaMax, alphaMin);
// Unpack the block
unpackLumelBlock (uncompressedBlock, secondCompressedBlock);
// Eval error
uint secondMethod=evalLumelBlock (originalBlock, uncompressedBlock, NL_LUMEL_BY_TILE, NL_LUMEL_BY_TILE);
// Second best ?
if (secondMethod<firstMethod)
{
// Copy compressed data
memcpy (compressedData, secondCompressedBlock, NL_BLOCK_LUMEL_COMPRESSED_SIZE);
}
// Next source block
compressedData+=NL_BLOCK_LUMEL_COMPRESSED_SIZE;
// Next block on the line
blockLine+=4;
}
// Next line of block
pLumelSrc+=lumelCount*4;
}
}
// ***************************************************************************
void CPatch::resetCompressedLumels ()
{
// Number of lumel by lines
uint lumelCount=OrderS*NL_LUMEL_BY_TILE;
// Number of block in a line
nlassert ((lumelCount&0x3)==0);
uint numLumelBlock=lumelCount>>2;
// Number of line
uint lineCount=OrderT*NL_LUMEL_BY_TILE;
// Number of block line
nlassert ((lineCount&0x3)==0);
uint numLineBlock=lineCount>>2;
// Size of the lumel array
uint size=numLineBlock*numLumelBlock*8;
// 4 bits per lumel
CompressedLumels.resize (size);
// No line have shadows.
memset (&CompressedLumels[0], 0, size);
}
// ***************************************************************************
// ***************************************************************************
// Functions (C/ASM).
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
#define a00 tex[0]
#define a10 tex[1]
#define a20 tex[2]
#define a30 tex[3]
#define a40 tex[4]
#define a01 tex[5]
#define a11 tex[6]
#define a21 tex[7]
#define a31 tex[8]
#define a41 tex[9]
#define a02 tex[10]
#define a12 tex[11]
#define a22 tex[12]
#define a32 tex[13]
#define a42 tex[14]
#define a03 tex[15]
#define a13 tex[16]
#define a23 tex[17]
#define a33 tex[18]
#define a43 tex[19]
#define a04 tex[20]
#define a14 tex[21]
#define a24 tex[22]
#define a34 tex[23]
#define a44 tex[24]
void NL3D_bilinearTileLightMap(CRGBA *tex)
{
// Fast bilinear of a 5x5 tile.
// Corners must be set.
// Later: pass it to ASM.
// Fill first column 0 and column 4.
a02.avg2(a00, a04);
a01.avg2(a00, a02);
a03.avg2(a02, a04);
a42.avg2(a40, a44);
a41.avg2(a40, a42);
a43.avg2(a42, a44);
// Fill Line 0.
a20.avg2(a00, a40);
a10.avg2(a00, a20);
a30.avg2(a20, a40);
// Fill Line 1.
a21.avg2(a01, a41);
a11.avg2(a01, a21);
a31.avg2(a21, a41);
// Fill Line 2.
a22.avg2(a02, a42);
a12.avg2(a02, a22);
a32.avg2(a22, a42);
// Fill Line 3.
a23.avg2(a03, a43);
a13.avg2(a03, a23);
a33.avg2(a23, a43);
// Fill Line 4.
a24.avg2(a04, a44);
a14.avg2(a04, a24);
a34.avg2(a24, a44);
}
// ***************************************************************************
// ***************************************************************************
// Lightmap get interface.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
uint8 CPatch::getLumel(const CUV &uv) const
{
// compute tile coord and lumel coord.
sint ts, tt;
// get in lumel coord.
sint w= (OrderS<<NL_LUMEL_BY_TILE_SHIFT);
sint h= (OrderT<<NL_LUMEL_BY_TILE_SHIFT);
// fastFloor: use a precision of 256 to avoid doing OptFastFloorBegin.
// add 128, to round and get cneter of lumel.
ts= NLMISC::OptFastFloor(uv.U* (w<<8) + 128); ts>>=8;
tt= NLMISC::OptFastFloor(uv.V* (h<<8) + 128); tt>>=8;
clamp(ts, 0, w-1);
clamp(tt, 0, h-1);
// get the lumel
uint8 ret;
getTileLumelmapPixelPrecomputed(ts>>NL_LUMEL_BY_TILE_SHIFT, tt>>NL_LUMEL_BY_TILE_SHIFT,
ts&(NL_LUMEL_BY_TILE-1), tt&(NL_LUMEL_BY_TILE-1), ret);
return ret;
}
// ***************************************************************************
// ***************************************************************************
// TileLightInfluences
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
void CPatch::resetTileLightInfluences()
{
// Fill default.
TileLightInfluences.resize((OrderS/2 +1) * (OrderT/2 +1));
// Disable All light influence on all points
for(uint i=0;i <TileLightInfluences.size(); i++)
{
// Disable all light influence on this point.
TileLightInfluences[i].Light[0]= 0xFF;
TileLightInfluences[i].Light[1]= 0xFF;
2010-05-06 00:08:41 +00:00
}
}
// ***************************************************************************
void CPatch::appendTileLightInfluences(const CUV &uv,
std::vector<CPointLightInfluence> &pointLightList) const
{
/*
WARNING !! only CPointLightNamed must be added here (used for convenience by CPatch::generateTileVegetable() )
*/
// Compute TLI coord for BiLinear.
sint x,y;
// There is (OrderS/2+1) * (OrderT/2+1) tileLightInfluences (TLI).
sint w= (OrderS>>1);
sint h= (OrderT>>1);
sint wTLI= w+1;
// fastFloor: use a precision of 256 to avoid doing OptFastFloorBegin.
x= NLMISC::OptFastFloor(uv.U * (w<<8));
y= NLMISC::OptFastFloor(uv.V * (h<<8));
clamp(x, 0, w<<8);
clamp(y, 0, h<<8);
// compute the TLI coord, and the subCoord for bilinear.
sint xTLI,yTLI, xSub, ySub;
xTLI= x>>8; clamp(xTLI, 0, w-1);
yTLI= y>>8; clamp(yTLI, 0, h-1);
// Hence, xSub and ySub range is [0, 256].
xSub= x - (xTLI<<8);
ySub= y - (yTLI<<8);
// Use a CLightInfluenceInterpolator to biLinear light influence
CLightInfluenceInterpolator interp;
// Must support only 2 light per TLI.
nlassert(CTileLightInfluence::NumLightPerCorner==2);
nlassert(CLightInfluenceInterpolator::NumLightPerCorner==2);
// Get ref on array of PointLightNamed.
CPointLightNamed *zonePointLights= NULL;
if( getZone()->_PointLightArray.getPointLights().size() >0 )
{
// const_cast, because will only change _IdInfluence, and
// also because CLightingManager will call appendLightedModel()
zonePointLights= const_cast<CPointLightNamed*>(&(getZone()->_PointLightArray.getPointLights()[0]));
}
// For 4 corners.
for(y=0;y<2;y++)
{
for(x=0;x<2;x++)
{
// get ref on TLI, and on corner.
const CTileLightInfluence &tli= TileLightInfluences[ (yTLI+y)*wTLI + xTLI+x ];
CLightInfluenceInterpolator::CCorner &corner= interp.Corners[y*2 + x];
// For all lights
uint lid;
for(lid= 0; lid<CTileLightInfluence::NumLightPerCorner; lid++)
{
// get the id of the light in the zone
uint tliLightId= tli.Light[lid];
// If empty id, stop
if(tliLightId==0xFF)
break;
else
{
// Set pointer of the light in the corner
corner.Lights[lid]= zonePointLights + tliLightId;
}
}
// Reset Empty slots.
for(; lid<CTileLightInfluence::NumLightPerCorner; lid++)
{
// set to NULL
corner.Lights[lid]= NULL;
}
}
}
// interpolate.
interp.interpolate(pointLightList, xSub/256.f, ySub/256.f);
}
// ***************************************************************************
CRGBA CPatch::getCurrentTLIColor(uint x, uint y) const
{
CRGBA ret;
ret= CRGBA::Black;
// if at least the zone has pointLights, add them.
if( getZone()->_PointLightArray.getPointLights().size() >0 )
{
const CPointLightNamed *zonePointLights;
zonePointLights= (&(getZone()->_PointLightArray.getPointLights()[0]));
uint wTLI= (OrderS>>1)+1;
const CTileLightInfluence &tli= TileLightInfluences[ y*wTLI + x];
for(uint lid=0;lid<CTileLightInfluence::NumLightPerCorner;lid++)
{
// Not influenced by a pointLight?, stop
if(tli.Light[lid]==0xFF)
break;
// Append the influence of this pointLight. NB: use unanimated version.
CRGBA lightCol= zonePointLights[tli.Light[lid]].getUnAnimatedDiffuse();
// modulate with landscape Material.
lightCol.modulateFromColorRGBOnly(lightCol, getLandscape()->getPointLightDiffuseMaterial() );
// modulate with precomputed diffuse factor
lightCol.modulateFromuiRGBOnly(lightCol, tli.getDiffuseLightFactor(lid) );
// add to the corner
ret.addRGBOnly(ret, lightCol);
}
}
return ret;
}
// ***************************************************************************
void CPatch::getCurrentTileTLIColors(uint ts, uint tt, NLMISC::CRGBA corners[4])
{
// Get ref on array of PointLightNamed.
if( getZone()->_PointLightArray.getPointLights().size() >0 )
{
// get coord of the tessBlock
uint tbs= ts>>1;
uint tbt= tt>>1;
// get tile id local to tessBlock.
uint tls= ts-(tbs<<1);
uint tlt= tt-(tbt<<1);
// For each corner of the tessBlock, compute lighting with pointLights.
CRGBA tbCorners[4];
for(uint y=0;y<2;y++)
{
for(uint x=0;x<2;x++)
{
CRGBA &cornerCol= tbCorners[y*2+x];
cornerCol= getCurrentTLIColor(tbs+x, tbt+y);
}
}
// Then biLinear to tile Level (tessBlock==2x2 tiles).
CRGBA tbEdges[4];
CRGBA tbMiddle;
// left.
tbEdges[0].avg2RGBOnly(tbCorners[0], tbCorners[2]);
tbEdges[0].A = 255;
2010-05-06 00:08:41 +00:00
// bottom
tbEdges[1].avg2RGBOnly(tbCorners[2], tbCorners[3]);
tbEdges[1].A = 255;
2010-05-06 00:08:41 +00:00
// right
tbEdges[2].avg2RGBOnly(tbCorners[1], tbCorners[3]);
tbEdges[2].A = 255;
2010-05-06 00:08:41 +00:00
// up
tbEdges[3].avg2RGBOnly(tbCorners[0], tbCorners[1]);
tbEdges[3].A = 255;
2010-05-06 00:08:41 +00:00
// middle.
tbMiddle.avg2RGBOnly(tbEdges[0], tbEdges[2]);
tbMiddle.A = 255;
2010-05-06 00:08:41 +00:00
// just copy result according to tile pos in tessBlock.
if(tlt==0)
{
if(tls==0)
{
corners[0]= tbCorners[0];
corners[1]= tbEdges[3];
corners[2]= tbEdges[0];
corners[3]= tbMiddle;
}
else
{
corners[0]= tbEdges[3];
corners[1]= tbCorners[1];
corners[2]= tbMiddle;
corners[3]= tbEdges[2];
}
}
else
{
if(tls==0)
{
corners[0]= tbEdges[0];
corners[1]= tbMiddle;
corners[2]= tbCorners[2];
corners[3]= tbEdges[1];
}
else
{
corners[0]= tbMiddle;
corners[1]= tbEdges[2];
corners[2]= tbEdges[1];
corners[3]= tbCorners[3];
}
}
}
else
{
// Just fill with 0s.
corners[0]= CRGBA::Black;
corners[1]= CRGBA::Black;
corners[2]= CRGBA::Black;
corners[3]= CRGBA::Black;
}
}
// ***************************************************************************
void CPatch::addTileLightmapWithTLI(uint ts, uint tt, NLMISC::CRGBA *dest, uint stride)
{
// compute colors ar corners of the tile.
CRGBA corners[4];
getCurrentTileTLIColors(ts, tt, corners);
// Bilinear accross the tile, and add to dest.
uint x, y;
for(y=0; y<NL_LUMEL_BY_TILE; y++)
{
for(x=0; x<NL_LUMEL_BY_TILE; x++)
{
// compute this pixel, and add
bilinearColorDiv2AndAdd(corners, x, y, dest[y*stride + x]);
}
}
}
// ***************************************************************************
void CPatch::addTileLightmapEdgeWithTLI(uint ts, uint tt, uint edge, NLMISC::CRGBA *dest, uint stride, bool inverse)
{
// compute colors ar corners of the tile.
CRGBA corners[4];
getCurrentTileTLIColors(ts, tt, corners);
// get coordinate according to edge.
uint x=0,y=0;
switch(edge)
{
case 0: x= 0; break;
case 1: y= NL_LUMEL_BY_TILE-1; break;
case 2: x= NL_LUMEL_BY_TILE-1; break;
case 3: y= 0; break;
};
// For all lumel of the edge, bilinear.
uint i;
for(i=0; i<NL_LUMEL_BY_TILE; i++)
{
// if vertical edge
if( (edge&1)==0 ) y= i;
// else horizontal edge
else x= i;
// manage inverse.
uint where;
if(inverse) where= (NL_LUMEL_BY_TILE-1)-i;
else where= i;
// compute this pixel, and modulate
bilinearColorDiv2AndAdd(corners, x, y, dest[where*stride]);
}
}
// ***************************************************************************
void CPatch::addTileLightmapPixelWithTLI(uint ts, uint tt, uint s, uint t, NLMISC::CRGBA *dest)
{
// compute colors ar corners of the tile.
CRGBA corners[4];
getCurrentTileTLIColors(ts, tt, corners);
// compute this pixel, and modulate
bilinearColorDiv2AndAdd(corners, s, t, *dest);
}
// ***************************************************************************
void CPatch::computeCurrentTLILightmapDiv2(NLMISC::CRGBA *array) const
{
// Size of TileLightInfluences
uint wTLI= (OrderS>>1)+1;
uint hTLI= (OrderT>>1)+1;
// colros at corners of tiles size.
uint wTC= OrderS+1;
uint wTCx2= wTC*2;
uint hTC= OrderT+1;
uint x, y;
// Compute TLI colors at each corner of each TessBlocks.
//=============
for(y=0;y<hTLI;y++)
{
// store every 2 tiles corners.
CRGBA *dst= array + y*2*wTC;
for(x=0;x<wTLI;x++)
{
*dst= getCurrentTLIColor(x, y);
dst->R >>= 1;
dst->G >>= 1;
dst->B >>= 1;
// skip 2 tiles corners.
dst++;
dst++;
}
}
// Compute TLI colors at each corner of each Tiles.
//=============
// Compute corner at middle of vertical TessBlock edges.
for(y=0;y<hTC-1;y+=2)
{
CRGBA *dst= array + y*wTC;
for(x=0;x<wTC;x+=2)
{
// Average midlle with cur and next.
(dst+wTC)->avg2RGBOnly(*dst, *(dst + wTCx2) );
// skip 2 tiles corners.
dst++;
dst++;
}
}
// Compute corner at middle of horizontal TessBlock edges, and at middle of TessBlock.
for(y=0;y<hTC;y++)
{
CRGBA *dst= array + y*wTC;
for(x=0;x<wTC-1;x+=2)
{
// Average midlle with cur and next.
(dst+1)->avg2RGBOnly(*dst, *(dst+2));
// skip 2 tiles corners.
dst++;
dst++;
}
}
}
// ***************************************************************************
// ***************************************************************************
// UpdateLighting.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
void CPatch::linkBeforeNearUL(CPatch *patchNext)
{
nlassert(patchNext);
// first, unlink others from me. NB: works even if _ULNearPrec==_ULNearNext==this.
_ULNearNext->_ULNearPrec= _ULNearPrec;
_ULNearPrec->_ULNearNext= _ULNearNext;
// link to igNext.
_ULNearNext= patchNext;
_ULNearPrec= patchNext->_ULNearPrec;
// link others to me.
_ULNearNext->_ULNearPrec= this;
_ULNearPrec->_ULNearNext= this;
}
// ***************************************************************************
void CPatch::unlinkNearUL()
{
// first, unlink others from me. NB: works even if _ULNearPrec==_ULNearNext==this.
_ULNearNext->_ULNearPrec= _ULNearPrec;
_ULNearPrec->_ULNearNext= _ULNearNext;
// reset
_ULNearPrec= this;
_ULNearNext= this;
}
// ***************************************************************************
uint CPatch::updateTessBlockLighting(uint numTb)
{
// TessBlocks must have been allocated and tessBlockId must be ok.
nlassert(numTb<TessBlocks.size());
// compute tessBlock coordinate
uint tbWidth= OrderS>>1;
uint ts= numTb&(tbWidth-1);
uint tt= numTb/tbWidth;
// expand to tile coordinate.
ts*= 2;
tt*= 2;
// get what tessBlock to use.
CTessBlock &tessBlock= TessBlocks[numTb];
// If the lightmap Id has not been computed, quit
if(tessBlock.LightMapRefCount==0)
return 0;
else
{
// Recompute the lightmap texture, with help of TileColors, with neighboring info etc...
CRGBA lightText[NL_TILE_LIGHTMAP_SIZE*NL_TILE_LIGHTMAP_SIZE];
computeNearBlockLightmap(ts&(~1), tt&(~1), lightText);
// donlod this texture to Driver etc...
Zone->Landscape->refillTileLightMap(tessBlock.LightMapId, lightText);
// return number of pixels computed.
return NL_TILE_LIGHTMAP_SIZE*NL_TILE_LIGHTMAP_SIZE;
}
}
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
void CPatch::addRefDLMContext()
{
// the patch must be compiled.
nlassert(Zone);
// if 0, create the context.
if(_DLMContextRefCount==0)
{
nlassert(_DLMContext==NULL);
_DLMContext= new CPatchDLMContext;
// init now the context.
_DLMContext->generate(this, getLandscape()->getTextureDLM(), getLandscape()->getPatchDLMContextList());
// If the patch is visible, it may have Far Vertices created,
// hence, we must refill them with good DLM Uvs.
if(!isRenderClipped())
{
// setup DLM Uv with new _DLMContext
fillVBFarsDLMUvOnly();
}
}
// incRef.
_DLMContextRefCount++;
}
// ***************************************************************************
void CPatch::decRefDLMContext(uint count)
{
// the patch must be compiled.
nlassert(Zone);
nlassert(_DLMContextRefCount>0);
// dec Ref.
_DLMContextRefCount-= count;
nlassert(_DLMContextRefCount>=0);
// If 0, delete the context.
if(_DLMContextRefCount==0)
{
delete _DLMContext;
_DLMContext= NULL;
// If the patch is visible, it may have Far Vertices created,
// hence, we must reset their DLM Uvs (to point to black pixel)
if(!isRenderClipped())
{
// setup DLM Uv with new _DLMContext
fillVBFarsDLMUvOnly();
}
}
}
// ***************************************************************************
void CPatch::beginDLMLighting()
{
nlassert(_DLMContext);
// Must bkup prec pointLightCount in OldPointLightCount, and reset CurPointLightCount
_DLMContext->OldPointLightCount= _DLMContext->CurPointLightCount;
_DLMContext->CurPointLightCount= 0;
// clear lighting, only if patch is visible
if(!isRenderClipped())
// NB: no-op if src is already full black.
_DLMContext->clearLighting();
}
// ***************************************************************************
void CPatch::processDLMLight(CPatchDLMPointLight &pl)
{
// add reference to currentLight, creating DLMContext if needed
addRefDLMContext();
// add curLight counter
_DLMContext->CurPointLightCount++;
// compute lighting, only if patch is visible
if(!isRenderClipped())
_DLMContext->addPointLightInfluence(pl);
}
// ***************************************************************************
void CPatch::endDLMLighting()
{
nlassert(_DLMContext);
// delete reference from old pointLight influences, at prec render() pass. _DLMContext may be deleted here,
// if no more lights use it, and if the patch is not in Near.
decRefDLMContext(_DLMContext->OldPointLightCount);
}
} // NL3D