khanat-opennel-code/code/nel/src/3d/zone.cpp
acemtp@users.sourceforge.net d5c601ffa5 initial version
2010-05-06 02:08:41 +02:00

2042 lines
55 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "std3d.h"
#include "nel/3d/zone.h"
#include "nel/3d/landscape.h"
#include "nel/3d/zone_symmetrisation.h"
#include "nel/misc/common.h"
#include "nel/misc/hierarchical_timer.h"
using namespace NLMISC;
using namespace std;
// define it only for debug bind.
//#define NL3D_DEBUG_DONT_BIND_PATCH
namespace NL3D
{
// ***************************************************************************
// ***************************************************************************
// CPatchInfo
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
void CPatchInfo::setCornerSmoothFlag(uint corner, bool smooth)
{
nlassert(corner<=3);
uint mask= 1<<corner;
if(smooth)
_CornerSmoothFlag|= mask;
else
_CornerSmoothFlag&= ~mask;
}
// ***************************************************************************
bool CPatchInfo::getCornerSmoothFlag(uint corner) const
{
nlassert(corner<=3);
uint mask= 1<<corner;
return (_CornerSmoothFlag & mask)!=0;
}
// ***************************************************************************
// ***************************************************************************
// CZone
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
CZone::CZone()
{
ZoneId= 0;
Compiled= false;
Landscape= NULL;
ClipResult= ClipOut;
}
// ***************************************************************************
CZone::~CZone()
{
// release() must have been called.
nlassert(!Compiled);
}
// ***************************************************************************
void CZone::computeBBScaleBias(const CAABBox &bb)
{
ZoneBB= bb;
// Take a security for noise. (useful for zone clipping).
ZoneBB.setHalfSize(ZoneBB.getHalfSize()+CVector(NL3D_NOISE_MAX, NL3D_NOISE_MAX, NL3D_NOISE_MAX));
CVector hs= ZoneBB.getHalfSize();
float rmax= maxof(hs.x, hs.y, hs.z);
PatchScale= rmax / 32760; // Prevent from float imprecision by taking 32760 and not 32767.
PatchBias= ZoneBB.getCenter();
}
// ***************************************************************************
void CZone::build(uint16 zoneId, const std::vector<CPatchInfo> &patchs, const std::vector<CBorderVertex> &borderVertices, uint32 numVertices)
{
CZoneInfo zinfo;
zinfo.ZoneId= zoneId;
zinfo.Patchs= patchs;
zinfo.BorderVertices= borderVertices;
build(zinfo, numVertices);
}
// ***************************************************************************
void CZone::build(const CZoneInfo &zoneInfo, uint32 numVertices)
{
sint i,j;
nlassert(!Compiled);
// Ref inupt
uint16 zoneId= zoneInfo.ZoneId;
const std::vector<CPatchInfo> &patchs= zoneInfo.Patchs;
const std::vector<CBorderVertex> &borderVertices= zoneInfo.BorderVertices;
ZoneId= zoneId;
BorderVertices= borderVertices;
// Compute the bbox and the bias/scale.
//=====================================
CAABBox bb;
if(patchs.size())
bb.setCenter(patchs[0].Patch.Vertices[0]);
bb.setHalfSize(CVector::Null);
for(j=0;j<(sint)patchs.size();j++)
{
const CBezierPatch &p= patchs[j].Patch;
for(i=0;i<4;i++)
bb.extend(p.Vertices[i]);
for(i=0;i<8;i++)
bb.extend(p.Tangents[i]);
for(i=0;i<4;i++)
bb.extend(p.Interiors[i]);
}
// Compute BBox, and Patch Scale Bias, according to Noise.
computeBBScaleBias(bb);
// Compute/compress Patchs.
//=========================
Patchs.resize(patchs.size());
PatchConnects.resize(patchs.size());
sint maxVertex=-1;
for(j=0;j<(sint)patchs.size();j++)
{
const CPatchInfo &pi= patchs[j];
const CBezierPatch &p= pi.Patch;
CPatch &pa= Patchs[j];
CPatchConnect &pc= PatchConnects[j];
// Smoothing flags
pa.Flags&=~NL_PATCH_SMOOTH_FLAG_MASK;
pa.Flags|=NL_PATCH_SMOOTH_FLAG_MASK&(pi.Flags<<NL_PATCH_SMOOTH_FLAG_SHIFT);
// Noise Data
// copy noise rotation.
pa.NoiseRotation= pi.NoiseRotation;
// copy all noise smoothing info.
for(i=0;i<4;i++)
{
pa.setCornerSmoothFlag(i, pi.getCornerSmoothFlag(i));
}
// Copy order of the patch
pa.OrderS= pi.OrderS;
pa.OrderT= pi.OrderT;
// Build the patch.
for(i=0;i<4;i++)
pa.Vertices[i].pack(p.Vertices[i], PatchBias, PatchScale);
for(i=0;i<8;i++)
pa.Tangents[i].pack(p.Tangents[i], PatchBias, PatchScale);
for(i=0;i<4;i++)
pa.Interiors[i].pack(p.Interiors[i], PatchBias, PatchScale);
pa.Tiles= pi.Tiles;
pa.TileColors= pi.TileColors;
/* Copy TileLightInfluences. It is possible that pi.TileLightInfluences.size()!= 0
and pi.TileLightInfluences.size()!= (uint)(pi.OrderS/2+1)*(pi.OrderT/2+1)
Because of a preceding bug where pa.OrderS and pa.OrderT were not initialized before the
pa.resetTileLightInfluences();
*/
if( pi.TileLightInfluences.size()!= (uint)(pi.OrderS/2+1)*(pi.OrderT/2+1) )
{
pa.resetTileLightInfluences();
}
else
{
pa.TileLightInfluences= pi.TileLightInfluences;
}
// Number of lumels in this patch
uint lumelCount=(pi.OrderS*NL_LUMEL_BY_TILE)*(pi.OrderT*NL_LUMEL_BY_TILE);
// Lumel empty ?
if (pi.Lumels.size ()==lumelCount)
{
// Pack the lumel map
pa.packShadowMap (&pi.Lumels[0]);
}
else
{
// Reset lightmap
pa.resetCompressedLumels ();
}
nlassert(pa.Tiles.size()== (uint)pi.OrderS*pi.OrderT);
nlassert(pa.TileColors.size()== (uint)(pi.OrderS+1)*(pi.OrderT+1));
// Build the patchConnect.
pc.ErrorSize= pi.ErrorSize;
for(i=0;i<4;i++)
{
pc.BaseVertices[i]= pi.BaseVertices[i];
maxVertex= max((sint)pc.BaseVertices[i], maxVertex);
}
for(i=0;i<4;i++)
pc.BindEdges[i]= pi.BindEdges[i];
}
NumVertices= maxVertex+1;
NumVertices= max((uint32)NumVertices, numVertices);
// Init the Clip Arrays
_PatchRenderClipped.resize(Patchs.size());
_PatchOldRenderClipped.resize(Patchs.size());
_PatchRenderClipped.setAll();
_PatchOldRenderClipped.setAll();
// Copy PointLights.
//=========================
// build array, lights are sorted
std::vector<uint> plRemap;
_PointLightArray.build(zoneInfo.PointLights, plRemap);
// Check TileLightInfluences integrity, and remap PointLight Indices.
for(j=0;j<(sint)patchs.size();j++)
{
CPatch &pa= Patchs[j];
for(uint k= 0; k<pa.TileLightInfluences.size(); k++)
{
CTileLightInfluence &tli= pa.TileLightInfluences[k];
for(uint l=0; l<CTileLightInfluence::NumLightPerCorner; l++)
{
// If NULL light, break and continue to next TileLightInfluence.
if(tli.Light[l]== 0xFF)
break;
else
{
// Check good index.
nlassert(tli.Light[l] < _PointLightArray.getPointLights().size());
// Remap index, because of light sorting.
tli.Light[l]= plRemap[tli.Light[l]];
}
}
}
}
}
// ***************************************************************************
void CZone::retrieve(std::vector<CPatchInfo> &patchs, std::vector<CBorderVertex> &borderVertices)
{
CZoneInfo zinfo;
retrieve(zinfo);
patchs= zinfo.Patchs;
borderVertices= zinfo.BorderVertices;
}
// ***************************************************************************
void CZone::retrieve(CZoneInfo &zoneInfo)
{
sint i,j;
// Ref on input.
std::vector<CPatchInfo> &patchs= zoneInfo.Patchs;
std::vector<CBorderVertex> &borderVertices= zoneInfo.BorderVertices;
// Copy zoneId.
zoneInfo.ZoneId= getZoneId();
// uncompress Patchs.
//=========================
patchs.resize(Patchs.size());
for(j=0;j<(sint)patchs.size();j++)
{
CPatchInfo &pi= patchs[j];
CBezierPatch &p= pi.Patch;
CPatch &pa= Patchs[j];
CPatchConnect &pc= PatchConnects[j];
// Smoothing flags
pi.Flags= (pa.Flags&NL_PATCH_SMOOTH_FLAG_MASK)>>NL_PATCH_SMOOTH_FLAG_SHIFT;
// Noise Data
// copy noise rotation.
pi.NoiseRotation= pa.NoiseRotation;
// copy all noise smoothing info.
for(i=0;i<4;i++)
{
pi.setCornerSmoothFlag(i, pa.getCornerSmoothFlag(i));
}
// re-Build the uncompressed bezier patch.
for(i=0;i<4;i++)
pa.Vertices[i].unpack(p.Vertices[i], PatchBias, PatchScale);
for(i=0;i<8;i++)
pa.Tangents[i].unpack(p.Tangents[i], PatchBias, PatchScale);
for(i=0;i<4;i++)
pa.Interiors[i].unpack(p.Interiors[i], PatchBias, PatchScale);
pi.Tiles= pa.Tiles;
pi.TileColors= pa.TileColors;
pi.TileLightInfluences= pa.TileLightInfluences;
pi.Lumels.resize ((pa.OrderS*4)*(pa.OrderT*4));
pi.Flags=(pa.Flags&NL_PATCH_SMOOTH_FLAG_MASK)>>NL_PATCH_SMOOTH_FLAG_SHIFT;
// Unpack the lumel map
pa.unpackShadowMap (&pi.Lumels[0]);
// from the patchConnect.
pi.OrderS= pa.OrderS;
pi.OrderT= pa.OrderT;
pi.ErrorSize= pc.ErrorSize;
for(i=0;i<4;i++)
{
pi.BaseVertices[i]= pc.BaseVertices[i];
}
for(i=0;i<4;i++)
pi.BindEdges[i]= pc.BindEdges[i];
}
// retrieve bordervertices.
//=========================
borderVertices= BorderVertices;
// retrieve PointLights.
//=========================
zoneInfo.PointLights= _PointLightArray.getPointLights();
}
// ***************************************************************************
void CZone::build(const CZone &zone)
{
nlassert(!Compiled);
ZoneId= zone.ZoneId;
BorderVertices= zone.BorderVertices;
// Compute the bbox and the bias/scale.
//=====================================
ZoneBB= zone.ZoneBB;
PatchScale= zone.PatchScale;
PatchBias= zone.PatchBias;
// Compute/compress Patchs.
//=========================
Patchs= zone.Patchs;
PatchConnects= zone.PatchConnects;
// Init the Clip Arrays
_PatchRenderClipped.resize(Patchs.size());
_PatchOldRenderClipped.resize(Patchs.size());
_PatchRenderClipped.setAll();
_PatchOldRenderClipped.setAll();
// copy pointLights.
//=========================
_PointLightArray= zone._PointLightArray;
NumVertices= zone.NumVertices;
}
// ***************************************************************************
void CBorderVertex::serial(NLMISC::IStream &f)
{
/* ***********************************************
* WARNING: This Class/Method must be thread-safe (ctor/dtor/serial): no static access for instance
* It can be loaded/called through CAsyncFileManager for instance
* ***********************************************/
(void)f.serialVersion(0);
f.xmlSerial (CurrentVertex, "CURRENT_VERTEX");
f.xmlSerial (NeighborZoneId, "NEIGHTBOR_ZONE_ID");
f.xmlSerial (NeighborVertex, "NEIGHTBOR_VERTEX");
}
void CZone::CPatchConnect::serial(NLMISC::IStream &f)
{
/* ***********************************************
* WARNING: This Class/Method must be thread-safe (ctor/dtor/serial): no static access for instance
* It can be loaded/called through CAsyncFileManager for instance
* ***********************************************/
uint ver= f.serialVersion(1);
if (ver<1)
f.serial(OldOrderS, OldOrderT, ErrorSize);
else
f.serial(ErrorSize);
f.xmlSerial (BaseVertices[0], BaseVertices[1], BaseVertices[2], BaseVertices[3], "BASE_VERTICES");
f.xmlSerial (BindEdges[0], BindEdges[1], BindEdges[2], BindEdges[3], "BIND_EDGES");
}
void CPatchInfo::CBindInfo::serial(NLMISC::IStream &f)
{
/* ***********************************************
* WARNING: This Class/Method must be thread-safe (ctor/dtor/serial): no static access for instance
* It can be loaded/called through CAsyncFileManager for instance
* ***********************************************/
(void)f.serialVersion(0);
f.xmlSerial(NPatchs, "NPATCH");
nlassert ( (NPatchs==0) | (NPatchs==1) | (NPatchs==2) | (NPatchs==4) | (NPatchs==5) );
f.xmlSerial (ZoneId, "ZONE_ID");
f.xmlSerial (Next[0], Next[1], Next[2], Next[3], "NEXT_PATCH");
f.xmlSerial (Edge[0], Edge[1], Edge[2], Edge[3], "NEXT_EDGE");
}
// ***************************************************************************
void CZone::serial(NLMISC::IStream &f)
{
/* ***********************************************
* WARNING: This Class/Method must be thread-safe (ctor/dtor/serial): no static access for instance
* It can be loaded/called through CAsyncFileManager for instance
* ***********************************************/
/*
Version 4:
- PointLights
Version 3:
- Lumels compression version 2.
Version 2:
- Lumels.
Version 1:
- Tile color.
Version 0:
- base verison.
*/
uint ver= f.serialVersion(4);
// No more compatibility before version 3
if (ver<3)
{
throw EOlderStream(f);
}
f.serialCheck((uint32)'ENOZ');
f.xmlSerial (ZoneId, "ZONE_ID");
f.xmlSerial (ZoneBB, "BB");
f.xmlSerial (PatchBias, "PATCH_BIAS");
f.xmlSerial (PatchScale, "PATCH_SCALE");
f.xmlSerial (NumVertices, "NUM_VERTICES");
f.xmlPush ("BORDER_VERTICES");
f.serialCont(BorderVertices);
f.xmlPop ();
f.xmlPush ("PATCHES");
f.serialCont(Patchs);
f.xmlPop ();
f.xmlPush ("PATCH_CONNECTS");
f.serialCont(PatchConnects);
f.xmlPop ();
if (ver>=4)
{
f.xmlPush ("POINT_LIGHTS");
f.serial(_PointLightArray);
f.xmlPop ();
}
// If read, must create and init Patch Clipped state to true (clipped even if not compiled)
if(f.isReading())
{
_PatchRenderClipped.resize(Patchs.size());
_PatchOldRenderClipped.resize(Patchs.size());
_PatchRenderClipped.setAll();
_PatchOldRenderClipped.setAll();
}
// If read and version 0, must init default TileColors of patchs.
//===============================================================
// if(f.isReading() && ver<2) ...
// Deprecated, because ver<3 not supported
}
// ***************************************************************************
void CZone::compile(CLandscape *landscape, TZoneMap &loadedZones)
{
sint i,j;
TZoneMap neighborZones;
//nlinfo("Compile Zone: %d \n", (sint32)getZoneId());
// Can't compile if compiled.
nlassert(!Compiled);
Landscape= landscape;
// Attach this to loadedZones.
//============================
nlassert(loadedZones.find(ZoneId)==loadedZones.end());
loadedZones[ZoneId]= this;
// Create/link the base vertices according to present neigbor zones.
//============================
BaseVertices.clear();
BaseVertices.resize(NumVertices);
// First try to link vertices to other.
for(i=0;i<(sint)BorderVertices.size();i++)
{
sint cur= BorderVertices[i].CurrentVertex;
sint vertto= BorderVertices[i].NeighborVertex;
sint zoneto= BorderVertices[i].NeighborZoneId;
nlassert(cur<NumVertices);
if(loadedZones.find(zoneto)!=loadedZones.end())
{
CZone *zone;
zone= (*loadedZones.find(zoneto)).second;
nlassert(zone!=this);
// insert the zone in the neigborood (if not done...).
neighborZones[zoneto]= zone;
// Doesn't matter if BaseVertices is already linked to an other zone...
// This should be the same pointer in this case...
BaseVertices[cur]= zone->getBaseVertex(vertto);
}
}
// Else, create unbounded vertices.
for(i=0;i<(sint)BaseVertices.size();i++)
{
if(BaseVertices[i]==NULL)
{
BaseVertices[i]= new CTessBaseVertex;
}
}
// compile() the patchs.
//======================
for(j=0;j<(sint)Patchs.size();j++)
{
CPatch &pa= Patchs[j];
CPatchConnect &pc= PatchConnects[j];
CTessVertex *baseVertices[4];
baseVertices[0]= &(BaseVertices[pc.BaseVertices[0]]->Vert);
baseVertices[1]= &(BaseVertices[pc.BaseVertices[1]]->Vert);
baseVertices[2]= &(BaseVertices[pc.BaseVertices[2]]->Vert);
baseVertices[3]= &(BaseVertices[pc.BaseVertices[3]]->Vert);
pa.compile(this, j, pa.OrderS, pa.OrderT, baseVertices, pc.ErrorSize);
};
// compile() the Clip information for the patchs.
//======================
_PatchBSpheres.resize(Patchs.size());
for(j=0;j<(sint)Patchs.size();j++)
{
CPatch &pa= Patchs[j];
// Buil the BSPhere of the patch.
CAABBox bb= pa.buildBBox();
_PatchBSpheres[j].Center= bb.getCenter();
_PatchBSpheres[j].Radius= bb.getRadius();
}
// bind() the patchs. (after all compiled).
//===================
for(j=0;j<(sint)Patchs.size();j++)
{
CPatch &pa= Patchs[j];
CPatchConnect &pc= PatchConnects[j];
// bind the patch. This is the original bind, not a rebind.
bindPatch(loadedZones, pa, pc, false);
}
// rebindBorder() on neighbor zones.
//==================================
ItZoneMap zoneIt;
// Traverse the neighborood.
for(zoneIt= neighborZones.begin(); zoneIt!=neighborZones.end(); zoneIt++)
{
(*zoneIt).second->rebindBorder(loadedZones);
}
// End!!
Compiled= true;
}
// ***************************************************************************
void CZone::release(TZoneMap &loadedZones)
{
sint i,j;
if(!Compiled)
return;
// detach this zone to loadedZones.
//=================================
nlassert(loadedZones.find(ZoneId)!=loadedZones.end());
loadedZones.erase(ZoneId);
// It doesn't server to unbindPatch(), since patch is not binded to neigbors.
// unbind() the patchs.
//=====================
for(j=0;j<(sint)Patchs.size();j++)
{
CPatch &pa= Patchs[j];
unbindPatch(pa);
}
// rebindBorder() on neighbor zones.
//==================================
// Build the nieghborood.
TZoneMap neighborZones;
for(i=0;i<(sint)BorderVertices.size();i++)
{
sint cur= BorderVertices[i].CurrentVertex;
sint zoneto= BorderVertices[i].NeighborZoneId;
nlassert(cur<NumVertices);
if(loadedZones.find(zoneto)!=loadedZones.end())
{
CZone *zone;
zone= (*loadedZones.find(zoneto)).second;
nlassert(zone!=this);
// insert the zone in the neigborood (if not done...).
neighborZones[zoneto]= zone;
}
}
// rebind borders.
ItZoneMap zoneIt;
// Traverse the neighborood.
for(zoneIt= neighborZones.begin(); zoneIt!=neighborZones.end(); zoneIt++)
{
// Since
(*zoneIt).second->rebindBorder(loadedZones);
}
// release() the patchs.
//======================
// unbind() need compiled neigbor patchs, so do the release after all unbind (so after rebindBorder() too...).
for(j=0;j<(sint)Patchs.size();j++)
{
CPatch &pa= Patchs[j];
pa.release();
}
// destroy/unlink the base vertices (internal..), according to present neigbor zones.
//=================================
// Just release the smartptrs (easy!!). Do it after patchs released...
BaseVertices.clear();
// End!!
Compiled= false;
Landscape= NULL;
ClipResult= ClipOut;
}
// ***************************************************************************
// ***************************************************************************
// Private part.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
void CZone::rebindBorder(TZoneMap &loadedZones)
{
sint j;
// rebind patchs which are on border.
for(j=0;j<(sint)Patchs.size();j++)
{
CPatch &pa= Patchs[j];
CPatchConnect &pc= PatchConnects[j];
if(patchOnBorder(pc))
{
// rebind the patch. This is a rebind.
bindPatch(loadedZones, pa, pc, true);
}
}
}
// ***************************************************************************
CPatch *CZone::getZonePatch(TZoneMap &loadedZones, sint zoneId, sint patch)
{
#ifdef NL3D_DEBUG_DONT_BIND_PATCH
return NULL;
#endif
if(loadedZones.find(zoneId)==loadedZones.end())
return NULL;
else
return (loadedZones[zoneId])->getPatch(patch);
}
// ***************************************************************************
void CZone::buildBindInfo(uint patchId, uint edge, CZone *neighborZone, CPatch::CBindInfo &paBind)
{
nlassert(patchId < Patchs.size());
nlassert(neighborZone);
CPatchConnect &pc= PatchConnects[patchId];
// Get the bind info of this patch to his neighbor on "edge".
CPatchInfo::CBindInfo &pcBind= pc.BindEdges[edge];
nlassert(pcBind.NPatchs==0 || pcBind.NPatchs==1 || pcBind.NPatchs==2 || pcBind.NPatchs==4 || pcBind.NPatchs==5);
// copy zone ptr.
paBind.Zone= neighborZone;
// Special case of a small patch connected to a bigger.
if(pcBind.NPatchs==5)
{
paBind.NPatchs= 1;
paBind.Next[0]= neighborZone->getPatch(pcBind.Next[0]);
paBind.Edge[0]= pcBind.Edge[0];
// Get the twin bindInfo of pcBind.
const CPatchInfo::CBindInfo &pcBindNeighbor=
neighborZone->getPatchConnect(pcBind.Next[0])->BindEdges[pcBind.Edge[0]];
// must have a multiple bind.
nlassert(pcBindNeighbor.NPatchs == 2 || pcBindNeighbor.NPatchs == 4);
// number of bind is stored on the twin bindInfo.
paBind.MultipleBindNum= pcBindNeighbor.NPatchs;
// Search our patchId on neighbor;
paBind.MultipleBindId= 255;
for(sint i=0; i<paBind.MultipleBindNum; i++)
{
if(pcBindNeighbor.Next[i]==patchId)
paBind.MultipleBindId= i;
}
nlassert(paBind.MultipleBindId!= 255);
}
else
{
paBind.MultipleBindNum= 0;
paBind.NPatchs= pcBind.NPatchs;
for(sint i=0;i<paBind.NPatchs; i++)
{
paBind.Next[i]= neighborZone->getPatch(pcBind.Next[i]);
paBind.Edge[i]= pcBind.Edge[i];
}
}
}
// ***************************************************************************
void CZone::bindPatch(TZoneMap &loadedZones, CPatch &pa, CPatchConnect &pc, bool rebind)
{
CPatch::CBindInfo edges[4];
// Fill all edges.
for(sint i=0;i<4;i++)
{
CPatchInfo::CBindInfo &pcBind= pc.BindEdges[i];
CPatch::CBindInfo &paBind= edges[i];
nlassert(pcBind.NPatchs==0 || pcBind.NPatchs==1 || pcBind.NPatchs==2 || pcBind.NPatchs==4 || pcBind.NPatchs==5);
paBind.NPatchs= pcBind.NPatchs;
// Find the zone.
TZoneMap::iterator itZoneMap;
// If no neighbor, or if zone neighbor not loaded.
if( paBind.NPatchs==0 || (itZoneMap=loadedZones.find(pcBind.ZoneId)) == loadedZones.end() )
paBind.Zone= NULL;
else
paBind.Zone= itZoneMap->second;
// Special case of a small patch connected to a bigger.
if(paBind.NPatchs==5)
{
paBind.Edge[0]= pcBind.Edge[0];
paBind.Next[0]= CZone::getZonePatch(loadedZones, pcBind.ZoneId, pcBind.Next[0]);
// If not loaded, don't bind to this edge.
if(!paBind.Next[0])
paBind.NPatchs=0;
else
{
// pa.bind() will do the job.
// Leave it flagged with NPatchs==5.
continue;
}
}
// Bind 1/1 and 1/2,1/4
if(paBind.NPatchs>=1)
{
paBind.Edge[0]= pcBind.Edge[0];
paBind.Next[0]= CZone::getZonePatch(loadedZones, pcBind.ZoneId, pcBind.Next[0]);
// If not loaded, don't bind to this edge.
if(!paBind.Next[0])
paBind.NPatchs=0;
}
if(paBind.NPatchs>=2)
{
paBind.Edge[1]= pcBind.Edge[1];
paBind.Next[1]= CZone::getZonePatch(loadedZones, pcBind.ZoneId, pcBind.Next[1]);
// If not loaded, don't bind to this edge.
if(!paBind.Next[1])
paBind.NPatchs=0;
}
if(paBind.NPatchs>=4)
{
paBind.Edge[2]= pcBind.Edge[2];
paBind.Edge[3]= pcBind.Edge[3];
paBind.Next[2]= CZone::getZonePatch(loadedZones, pcBind.ZoneId, pcBind.Next[2]);
paBind.Next[3]= CZone::getZonePatch(loadedZones, pcBind.ZoneId, pcBind.Next[3]);
// If not loaded, don't bind to this edge.
if(!paBind.Next[2] || !paBind.Next[3])
paBind.NPatchs=0;
}
}
// First, unbind.
pa.unbind();
// Then bind.
pa.bind(edges, rebind);
}
// ***************************************************************************
void CZone::unbindPatch(CPatch &pa)
{
/*
Remind: the old version with CPatch::unbindFrom*() doesn't work because of CZone::release(). This function
first erase the zone from loadedZones...
Not matter here. We use CPatch::unbind() which should do all the good job correctly (unbind pa from ohters
, and unbind others from pa at same time).
*/
pa.unbind();
}
// ***************************************************************************
bool CZone::patchOnBorder(const CPatchConnect &pc) const
{
// If only one of neighbor patch is not of this zone, we are on a border.
// Test all edges.
for(sint i=0;i<4;i++)
{
const CPatchInfo::CBindInfo &pcBind= pc.BindEdges[i];
nlassert(pcBind.NPatchs==0 || pcBind.NPatchs==1 || pcBind.NPatchs==2 || pcBind.NPatchs==4 || pcBind.NPatchs==5);
if(pcBind.NPatchs>=1)
{
if(pcBind.ZoneId != ZoneId)
return true;
}
}
return false;
}
// ***************************************************************************
// ***************************************************************************
// Render part.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
const CBSphere &CZone::getPatchBSphere(uint patch) const
{
static CBSphere dummySphere;
if(patch<_PatchBSpheres.size())
return _PatchBSpheres[patch];
else
return dummySphere;
}
// ***************************************************************************
void CZone::clip(const std::vector<CPlane> &pyramid)
{
H_AUTO( NLMISC_ClipZone );
nlassert(Compiled);
// bkup old ClipResult. NB: by default, it is ClipOut (no VB created).
sint oldClipResult= ClipResult;
// Pyramid with only the planes that clip the zone
static std::vector<CPlane> patchPyramid(10);
static std::vector<uint> patchPyramidIndex(10);
patchPyramidIndex.clear();
// Compute ClipResult.
//-------------------
ClipResult= ClipIn;
for(sint i=0;i<(sint)pyramid.size();i++)
{
// If entirely out.
if(!ZoneBB.clipBack(pyramid[i]))
{
ClipResult= ClipOut;
// If out of only one plane, out of all.
break;
}
// If partially IN (ie not entirely out, and not entirely IN)
else if(ZoneBB.clipFront(pyramid[i]))
{
// Force ClipResult to be ClipSide, and not ClipIn.
ClipResult=ClipSide;
// Append the plane index to list to test
patchPyramidIndex.push_back(i);
}
}
// Easy Clip :)
if(Patchs.empty())
{
ClipResult= ClipOut;
// don't need to go below...
return;
}
// Clip By Patch Pass.
//--------------------
if(ClipResult==ClipOut)
{
H_AUTO( NLMISC_ClipZone_Out );
// Set All RenderClip flags to true.
_PatchRenderClipped.setAll();
}
else if(ClipResult==ClipIn)
{
H_AUTO( NLMISC_ClipZone_In );
// Set All RenderClip flags to false.
_PatchRenderClipped.clearAll();
}
else
{
H_AUTO( NLMISC_ClipZone_Side );
// Copy only the pyramid planes of interest
patchPyramid.resize(patchPyramidIndex.size());
uint i;
for(i=0;i<patchPyramidIndex.size();i++)
{
patchPyramid[i]= pyramid[patchPyramidIndex[i]];
}
// clip all patchs with the simplified pyramid
clipPatchs(patchPyramid);
}
// delete / reallocate / fill VBuffers.
//-------------------
// If there is a change in the Clip of the zone, or if patchs may have change (ie ClipSide is undetermined).
if(oldClipResult!=ClipResult || oldClipResult==ClipSide)
{
// get BitSet as Raw Array of uint32
uint32 *oldRenderClip= const_cast<uint32*>(&_PatchOldRenderClipped.getVector()[0]);
const uint32 *newRenderClip= &_PatchRenderClipped.getVector()[0];
uint numPatchs= Patchs.size();
// Then, we must test by patch.
for(uint i=0;i<numPatchs;oldRenderClip++, newRenderClip++)
{
uint32 oldWord= *oldRenderClip;
uint32 newWord= *newRenderClip;
// process at max 32 patch
uint maxNumBits= min((numPatchs-i), 32U);
uint32 mask= 1;
for(;maxNumBits>0;maxNumBits--, mask<<=1, i++)
{
// same as: if(_PatchOldRenderClipped[i] != _PatchRenderClipped[i])
if( (oldWord^newWord)&mask )
{
// set the flag.
*oldRenderClip&= ~mask;
*oldRenderClip|= newWord&mask;
// update clip patch
Patchs[i].updateClipPatchVB( (newWord&mask)!=0 );
}
}
}
}
}
// ***************************************************************************
void CZone::clipPatchs(const std::vector<CPlane> &pyramid)
{
// Init all to Not clipped
_PatchRenderClipped.clearAll();
for(uint j=0;j<_PatchBSpheres.size();j++)
{
CBSphere &bSphere= _PatchBSpheres[j];
for(sint i=0;i<(sint)pyramid.size();i++)
{
// If entirely out.
if(!bSphere.clipBack(pyramid[i]))
{
_PatchRenderClipped.set(j, true);
break;
}
}
}
}
// ***************************************************************************
// DebugYoyo.
// Code for Debug test Only.. Do not erase it, may be used later :)
/*
static void cleanTess(CTessFace *face)
{
if(!face->isLeaf())
{
cleanTess(face->SonLeft);
cleanTess(face->SonRight);
}
// If has father, clean it.
if(face->Father)
{
CTessFace *face1=face->Father;
CTessFace *face2=face->Father->FBase;
face1->FLeft= face1->SonLeft->FBase;
face1->FRight= face1->SonRight->FBase;
if(face2!=NULL)
{
face2->FLeft= face2->SonLeft->FBase;
face2->FRight= face2->SonRight->FBase;
}
}
}
static void testTess(CTessFace *face)
{
if(!face->isLeaf())
{
testTess(face->SonLeft);
testTess(face->SonRight);
}
// Test validity.
nlassert(!face->FBase || face->FBase->Patch!=(CPatch*)0xdddddddd);
nlassert(!face->FLeft || face->FLeft->Patch!=(CPatch*)0xdddddddd);
nlassert(!face->FRight || face->FRight->Patch!=(CPatch*)0xdddddddd);
}
static void checkTess()
{
// This test should be inserted at begin of CZone::refine().
// And it needs hacking public/private.
CPatch *pPatch;
sint n;
pPatch= &(*Patchs.begin());
for(n=(sint)Patchs.size();n>0;n--, pPatch++)
{
cleanTess(pPatch->Son0);
cleanTess(pPatch->Son1);
}
pPatch= &(*Patchs.begin());
for(n=(sint)Patchs.size();n>0;n--, pPatch++)
{
testTess(pPatch->Son0);
testTess(pPatch->Son1);
}
}
*/
// ***************************************************************************
void CZone::excludePatchFromRefineAll(uint patch, bool exclude)
{
nlassert(Compiled);
nlassert(patch<Patchs.size());
if(patch>=Patchs.size())
return;
Patchs[patch].ExcludeFromRefineAll= exclude;
}
// ***************************************************************************
void CZone::refineAll()
{
nlassert(Compiled);
if(Patchs.size()==0)
return;
// DO NOT do a forceNoRenderClip(), to avoid big allocation of Near/Far VB vertices in driver.
// DO NOT modify ClipResult, to avoid big allocation of Near/Far VB vertices in driver.
// refine ALL patchs (even those which may be invisible).
CPatch *pPatch= &(*Patchs.begin());
sint n;
for(n=(sint)Patchs.size();n>0;n--, pPatch++)
{
// For Pacs construction: may exclude some patch from refineAll (for speed improvement).
if(!pPatch->ExcludeFromRefineAll)
pPatch->refineAll();
}
}
// ***************************************************************************
void CZone::averageTesselationVertices()
{
nlassert(Compiled);
if(Patchs.size()==0)
return;
// averageTesselationVertices of ALL patchs.
CPatch *pPatch= &(*Patchs.begin());
for(sint n=(sint)Patchs.size();n>0;n--, pPatch++)
{
pPatch->averageTesselationVertices();
}
}
// ***************************************************************************
void CZone::preRender()
{
nlassert(Compiled);
// Must be 2^X-1.
static const uint updateFarRefineFreq= 15;
// Take the renderDate here.
uint curDateMod= CLandscapeGlobals::CurrentRenderDate & updateFarRefineFreq;
// If no patchs, do nothing.
if(Patchs.empty())
return;
/* If patchs invisible, must still update their Far Textures,
else, there may be slowdown when we turn the head.
*/
// If all the zone is invisible.
if(ClipResult==ClipOut)
{
// No patchs are visible, but maybe update the far textures.
if( curDateMod==(ZoneId & updateFarRefineFreq) )
{
// updateTextureFarOnly for all patchs.
for(uint i=0;i<Patchs.size();i++)
{
Patchs[i].updateTextureFarOnly(_PatchBSpheres[i]);
}
}
}
// else If some patchs only are visible.
else if(ClipResult==ClipSide)
{
// PreRender Pass, or updateTextureFarOnly(), according to _PatchRenderClipped state.
for(uint i=0;i<Patchs.size();i++)
{
// If the patch is visible
if(!_PatchRenderClipped[i])
{
// Then preRender it.
Patchs[i].preRender(_PatchBSpheres[i]);
}
else
{
// else maybe updateFar it.
// ZoneId+i for better repartition.
if( curDateMod==((ZoneId+i) & updateFarRefineFreq) )
Patchs[i].updateTextureFarOnly(_PatchBSpheres[i]);
}
}
}
else // ClipResult==ClipIn
{
// PreRender Pass for All
for(uint i=0;i<Patchs.size();i++)
{
Patchs[i].preRender(_PatchBSpheres[i]);
}
}
}
// ***************************************************************************
void CZone::resetRenderFarAndDeleteVBFV()
{
for(uint i=0;i<Patchs.size();i++)
{
// If patch is visible
if(!_PatchRenderClipped[i])
{
// release VertexBuffer, and FaceBuffer
Patchs[i].deleteVBAndFaceVector();
// Flag.
_PatchRenderClipped.set(i, true);
}
Patchs[i].resetRenderFar();
}
}
// ***************************************************************************
void CZone::forceMergeAtTileLevel()
{
CPatch *pPatch=0;
if(Patchs.size()>0)
pPatch= &(*Patchs.begin());
for(sint n=(sint)Patchs.size();n>0;n--, pPatch++)
{
pPatch->forceMergeAtTileLevel();
}
}
// ***************************************************************************
// ***************************************************************************
// Misc part.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
void CZone::changePatchTextureAndColor (sint numPatch, const std::vector<CTileElement> *tiles, const std::vector<CTileColor> *colors)
{
nlassert(numPatch>=0);
nlassert(numPatch<getNumPatchs());
// Update the patch texture.
if (tiles)
{
nlassert( Patchs[numPatch].Tiles.size() == tiles->size() );
Patchs[numPatch].Tiles = *tiles;
}
// Update the patch colors.
if (colors)
{
nlassert( Patchs[numPatch].TileColors.size() == colors->size() );
Patchs[numPatch].TileColors = *colors;
}
if (Compiled)
{
// If the patch is visible, then we must LockBuffers, because new VertexVB may be created.
if(!_PatchRenderClipped[numPatch])
Landscape->updateGlobalsAndLockBuffers(CVector::Null);
// Recompute UVs for new setup of Tiles.
Patchs[numPatch].deleteTileUvs();
Patchs[numPatch].recreateTileUvs();
// unlockBuffers() if necessary.
if(!_PatchRenderClipped[numPatch])
{
Landscape->unlockBuffers();
// This patch is visible, and TileFaces have been deleted / added.
// So must update TessBlock.
Landscape->updateTessBlocksFaceVector();
}
}
}
// ***************************************************************************
void CZone::refreshTesselationGeometry(sint numPatch)
{
nlassert(numPatch>=0);
nlassert(numPatch<getNumPatchs());
nlassert(Compiled);
// At next render, we must re-fill the entire unclipped VB, so change are taken into account.
Landscape->_RenderMustRefillVB= true;
Patchs[numPatch].refreshTesselationGeometry();
}
// ***************************************************************************
const std::vector<CTileElement> &CZone::getPatchTexture(sint numPatch) const
{
nlassert(numPatch>=0);
nlassert(numPatch<getNumPatchs());
// Update the patch texture.
return Patchs[numPatch].Tiles;
}
// ***************************************************************************
const std::vector<CTileColor> &CZone::getPatchColor(sint numPatch) const
{
nlassert(numPatch>=0);
nlassert(numPatch<getNumPatchs());
// Update the patch texture.
return Patchs[numPatch].TileColors;
}
// ***************************************************************************
void CZone::setTileColor(bool monochrome, float factor)
{
nlassert(factor >= 0.0f); // factor must not be negative as its a multiplier
if (monochrome)
{
for (uint32 i = 0; i < Patchs.size(); ++i)
{
vector<CTileColor> &rTC = Patchs[i].TileColors;
for (uint32 j = 0; j < rTC.size(); ++j)
{
float fR = (rTC[j].Color565 & 31) / 32.0f;
float fG = ((rTC[j].Color565 >> 5) & 63) / 64.0f;
float fB = ((rTC[j].Color565 >> 11) & 31) / 32.0f;
fR = 0.28f * fR + 0.59f * fG + 0.13f * fB;
nlassert(fR < 0.99f);
fR *= factor;
if (fR > 0.99f) fR = 0.99f; // Avoid reaching 1
uint16 nR = (uint16)(fR * 32.0f);
uint16 nG = (uint16)(fR * 64.0f);
uint16 nB = (uint16)(fR * 32.0f);
rTC[j].Color565 = nR + (nG << 5) + (nB << 11);
}
}
}
else
{
if (factor != 1.0f)
{
for (uint32 i = 0; i < Patchs.size(); ++i)
{
vector<CTileColor> &rTC = Patchs[i].TileColors;
for (uint32 j = 0; j < rTC.size(); ++j)
{
float fR = (rTC[j].Color565 & 31) / 32.0f;
float fG = ((rTC[j].Color565 >> 5) & 63) / 64.0f;
float fB = ((rTC[j].Color565 >> 11) & 31) / 32.0f;
fR *= factor;
fG *= factor;
fB *= factor;
if (fR > 0.99f) fR = 0.99f;
if (fG > 0.99f) fG = 0.99f;
if (fB > 0.99f) fB = 0.99f;
uint16 nR = (uint16)(fR * 32.0f);
uint16 nG = (uint16)(fG * 64.0f);
uint16 nB = (uint16)(fB * 32.0f);
rTC[j].Color565 = nR + (nG << 5) + (nB << 11);
}
}
}
}
}
// ***************************************************************************
void CZone::debugBinds(FILE *f)
{
fprintf(f, "*****************************\n");
fprintf(f, "ZoneId: %d. NPatchs:%zu\n", ZoneId, PatchConnects.size());
sint i;
for(i=0;i<(sint)PatchConnects.size();i++)
{
CPatchConnect &pc= PatchConnects[i];
fprintf(f, "patch%d:\n", i);
for(sint j=0;j<4;j++)
{
CPatchInfo::CBindInfo &bd= pc.BindEdges[j];
fprintf(f, " edge%d: Zone:%d. NPatchs:%d. ", j, bd.ZoneId, bd.NPatchs);
for(sint k=0;k<bd.NPatchs;k++)
{
fprintf(f, "p%de%d - ", bd.Next[k], bd.Edge[k]);
}
fprintf(f, "\n");
}
}
fprintf(f,"Vertices :\n");
for(i=0;i<(sint)BorderVertices.size();i++)
{
fprintf(f,"current : %d -> (zone %d) vertex %d\n",BorderVertices[i].CurrentVertex,
BorderVertices[i].NeighborZoneId,
BorderVertices[i].NeighborVertex);
}
}
// ***************************************************************************
void CZone::applyHeightField(const CLandscape &landScape)
{
sint i,j;
vector<CBezierPatch> patchs;
// no patch, do nothing.
if(Patchs.size()==0)
return;
// 0. Unpack patchs to Bezier Patchs.
//===================================
patchs.resize(Patchs.size());
for(j=0;j<(sint)patchs.size();j++)
{
CBezierPatch &p= patchs[j];
CPatch &pa= Patchs[j];
// re-Build the uncompressed bezier patch.
for(i=0;i<4;i++)
pa.Vertices[i].unpack(p.Vertices[i], PatchBias, PatchScale);
for(i=0;i<8;i++)
pa.Tangents[i].unpack(p.Tangents[i], PatchBias, PatchScale);
for(i=0;i<4;i++)
pa.Interiors[i].unpack(p.Interiors[i], PatchBias, PatchScale);
}
// 1. apply heightfield on bezier patchs.
//===================================
for(j=0;j<(sint)patchs.size();j++)
{
CBezierPatch &p= patchs[j];
// apply delta.
for(i=0;i<4;i++)
p.Vertices[i]+= landScape.getHeightFieldDeltaZ(p.Vertices[i].x, p.Vertices[i].y);
for(i=0;i<8;i++)
p.Tangents[i]+= landScape.getHeightFieldDeltaZ(p.Tangents[i].x, p.Tangents[i].y);
for(i=0;i<4;i++)
p.Interiors[i]+= landScape.getHeightFieldDeltaZ(p.Interiors[i].x, p.Interiors[i].y);
}
// 2. Re-compute Patch Scale/Bias, and Zone BBox.
//===================================
CAABBox bb;
bb.setCenter(patchs[0].Vertices[0]);
bb.setHalfSize(CVector::Null);
for(j=0;j<(sint)patchs.size();j++)
{
// extend bbox.
const CBezierPatch &p= patchs[j];
for(i=0;i<4;i++)
bb.extend(p.Vertices[i]);
for(i=0;i<8;i++)
bb.extend(p.Tangents[i]);
for(i=0;i<4;i++)
bb.extend(p.Interiors[i]);
}
// Compute BBox, and Patch Scale Bias, according to Noise.
computeBBScaleBias(bb);
// 3. Re-pack patchs.
//===================================
for(j=0;j<(sint)patchs.size();j++)
{
CBezierPatch &p= patchs[j];
CPatch &pa= Patchs[j];
// Build the packed patch.
for(i=0;i<4;i++)
pa.Vertices[i].pack(p.Vertices[i], PatchBias, PatchScale);
for(i=0;i<8;i++)
pa.Tangents[i].pack(p.Tangents[i], PatchBias, PatchScale);
for(i=0;i<4;i++)
pa.Interiors[i].pack(p.Interiors[i], PatchBias, PatchScale);
}
}
// ***************************************************************************
void CZone::setupColorsFromTileFlags(const NLMISC::CRGBA colors[4])
{
for (uint k = 0; k < Patchs.size(); ++k)
{
Patchs[k].setupColorsFromTileFlags(colors);
}
}
// ***************************************************************************
void CZone::copyTilesFlags(sint destPatchId, const CPatch *srcPatch)
{
CPatch *destPatch = getPatch(destPatchId);
destPatch->copyTileFlagsFromPatch(srcPatch);
}
// ***************************************************************************
bool CPatchInfo::getNeighborTile (uint patchId, uint edge, sint position, uint &patchOut, sint &sOut, sint &tOut,
const vector<CPatchInfo> &patchInfos) const
{
nlassert (edge<4);
// S or T ?
uint length = (edge&1) ? OrderS : OrderT;
nlassert ((uint)position<length);
// What kind of case ?
switch (BindEdges[edge].NPatchs)
{
case 1:
case 2:
case 4:
{
// Get neighbor index and position in neighbor
uint neighborLength = (length / BindEdges[edge].NPatchs);
uint neighbor = position / neighborLength;
uint neighborPosition = neighborLength - (position % neighborLength) - 1;
uint neighborEdge = BindEdges[edge].Edge[neighbor];
// Patch id
patchOut = BindEdges[edge].Next[neighbor];
// Check neighbor
uint neighborRealLength = (neighborEdge&1) ? patchInfos[patchOut].OrderS : patchInfos[patchOut].OrderT;
if (neighborRealLength == neighborLength)
{
// Get final coordinate
switch (neighborEdge)
{
case 0:
sOut = 0;
tOut = neighborPosition;
break;
case 1:
sOut = neighborPosition;
tOut = patchInfos[patchOut].OrderT-1;
break;
case 2:
sOut = patchInfos[patchOut].OrderS-1;
tOut = patchInfos[patchOut].OrderT-neighborPosition-1;
break;
case 3:
sOut = patchInfos[patchOut].OrderS-neighborPosition-1;
tOut = 0;
break;
}
// Ok todo remove
return true;
}
}
break;
case 5:
{
// Find in the neighbor where we are
patchOut = BindEdges[edge].Next[0];
uint neighborEdge = BindEdges[edge].Edge[0];
uint neighborEdgeCount = patchInfos[patchOut].BindEdges[neighborEdge].NPatchs;
// Check neighbor
uint neighborRealLength = (neighborEdge&1) ? patchInfos[patchOut].OrderS : patchInfos[patchOut].OrderT;
// Good length ?
if ((neighborRealLength / neighborEdgeCount) == length)
{
// Find us in the neighbor
uint neighborPosition;
for (neighborPosition=0; neighborPosition<neighborEdgeCount; neighborPosition++)
{
// Found ?
if (patchInfos[patchOut].BindEdges[neighborEdge].Next[neighborPosition] == patchId)
break;
}
// Must be found
nlassert (neighborPosition!=neighborEdgeCount);
neighborPosition = (neighborPosition + 1) * (neighborRealLength / neighborEdgeCount) - position - 1;
// Get final coordinate
switch (neighborEdge)
{
case 0:
sOut = 0;
tOut = neighborPosition;
break;
case 1:
sOut = neighborPosition;
tOut = patchInfos[patchOut].OrderT-1;
break;
case 2:
sOut = patchInfos[patchOut].OrderS-1;
tOut = patchInfos[patchOut].OrderT-neighborPosition-1;
break;
case 3:
sOut = patchInfos[patchOut].OrderS-neighborPosition-1;
tOut = 0;
break;
}
// Ok
return true;
}
}
break;
}
return false;
}
// ***************************************************************************
bool CPatchInfo::getTileSymmetryRotate (const CTileBank &bank, uint tile, bool &symmetry, uint &rotate)
{
// Need check the tile ?
if ( (symmetry || (rotate != 0)) && (tile != 0xffffffff) )
{
// Tile exist ?
if (tile < (uint)bank.getTileCount())
{
// Get xref
int tileSet;
int number;
CTileBank::TTileType type;
// Get tile xref
bank.getTileXRef ((int)tile, tileSet, number, type);
if ((tileSet < 0) || (tileSet >= bank.getTileSetCount()))
{
nlwarning("tile %d has an unknown tileSet (%d)",tile, tileSet);
return false;
}
// Is it an oriented tile ?
if (bank.getTileSet (tileSet)->getOriented())
{
// New rotation value
rotate = 0;
}
// Ok
return true;
}
return false;
}
else
return true;
}
// ***************************************************************************
bool CPatchInfo::transformTile (const CTileBank &bank, uint &tile, uint &tileRotation, bool symmetry, uint rotate, bool goofy)
{
// Tile exist ?
if ( (rotate!=0) || symmetry )
{
if (tile < (uint)bank.getTileCount())
{
// Get xref
int tileSet;
int number;
CTileBank::TTileType type;
// Get tile xref
bank.getTileXRef ((int)tile, tileSet, number, type);
// Transition ?
if (type == CTileBank::transition)
{
// Rotation for transition
uint transRotate = rotate;
// Number should be ok
nlassert (number>=0);
nlassert (number<CTileSet::count);
// Tlie set number
const CTileSet *pTileSet = bank.getTileSet (tileSet);
// Get border desc
CTileSet::TFlagBorder oriented[4] =
{
pTileSet->getOrientedBorder (CTileSet::left, CTileSet::getEdgeType ((CTileSet::TTransition)number, CTileSet::left)),
pTileSet->getOrientedBorder (CTileSet::bottom, CTileSet::getEdgeType ((CTileSet::TTransition)number, CTileSet::bottom)),
pTileSet->getOrientedBorder (CTileSet::right, CTileSet::getEdgeType ((CTileSet::TTransition)number, CTileSet::right)),
pTileSet->getOrientedBorder (CTileSet::top, CTileSet::getEdgeType ((CTileSet::TTransition)number, CTileSet::top))
};
// Symmetry ?
if (symmetry)
{
if ( (tileRotation & 1) ^ goofy )
{
CTileSet::TFlagBorder tmp = oriented[1];
oriented[1] = CTileSet::getInvertBorder (oriented[3]);
oriented[3] = CTileSet::getInvertBorder (tmp);
oriented[2] = CTileSet::getInvertBorder (oriented[2]);
oriented[0] = CTileSet::getInvertBorder (oriented[0]);
}
else
{
CTileSet::TFlagBorder tmp = oriented[0];
oriented[0] = CTileSet::getInvertBorder (oriented[2]);
oriented[2] = CTileSet::getInvertBorder (tmp);
oriented[1] = CTileSet::getInvertBorder (oriented[1]);
oriented[3] = CTileSet::getInvertBorder (oriented[3]);
}
}
// Rotation
CTileSet::TFlagBorder edges[4];
edges[0] = pTileSet->getOrientedBorder (CTileSet::left, oriented[(0 + transRotate )&3]);
edges[1] = pTileSet->getOrientedBorder (CTileSet::bottom, oriented[(1 + transRotate )&3]);
edges[2] = pTileSet->getOrientedBorder (CTileSet::right, oriented[(2 + transRotate )&3]);
edges[3] = pTileSet->getOrientedBorder (CTileSet::top, oriented[(3 + transRotate )&3]);
// Get the good tile number
CTileSet::TTransition transition = pTileSet->getTransitionTile (edges[3], edges[1], edges[0], edges[2]);
nlassert ((CTileSet::TTransition)transition != CTileSet::notfound);
tile = (uint)(pTileSet->getTransition (transition)->getTile ());
}
// Transform rotation: invert rotation
tileRotation += rotate;
// If goofy, add +2
if (goofy && symmetry)
tileRotation += 2;
// Mask the rotation
tileRotation &= 3;
}
else
return false;
}
// Ok
return true;
}
// ***************************************************************************
void CPatchInfo::transform256Case (const CTileBank &bank, uint8 &case256, uint tileRotation, bool symmetry, uint rotate, bool goofy)
{
// Tile exist ?
if ( (rotate!=0) || symmetry )
{
// Symmetry ?
if (symmetry)
{
// Take the symmetry
uint symArray[4] = {3, 2, 1, 0};
case256 = symArray[case256];
if (goofy && ((tileRotation & 1) ==0))
case256 += 2;
if ((!goofy) && (tileRotation & 1))
case256 += 2;
}
// Rotation ?
case256 -= rotate;
case256 &= 3;
}
}
// ***************************************************************************
bool CPatchInfo::transform (std::vector<CPatchInfo> &patchInfo, NL3D::CZoneSymmetrisation &zoneSymmetry, const NL3D::CTileBank &bank, bool symmetry, uint rotate, float snapCell, float weldThreshold, const NLMISC::CMatrix &toOriginalSpace)
{
uint patchCount = patchInfo.size ();
uint i;
// --- Export tile info Symmetry of the bind info.
// --- Parse each patch and each edge
// For each patches
NL3D::CZoneSymmetrisation::CError error;
// Build the structure
if (!zoneSymmetry.build (patchInfo, snapCell, weldThreshold, bank, error, toOriginalSpace))
{
return false;
}
// Symmetry ?
if (symmetry)
{
for(i=0 ; i<patchCount; i++)
{
// Ref on the current patch
CPatchInfo &pi = patchInfo[i];
// --- Symmetry vertex indexes
// Vertices
CVector tmp = pi.Patch.Vertices[0];
pi.Patch.Vertices[0] = pi.Patch.Vertices[3];
pi.Patch.Vertices[3] = tmp;
tmp = pi.Patch.Vertices[1];
pi.Patch.Vertices[1] = pi.Patch.Vertices[2];
pi.Patch.Vertices[2] = tmp;
// Tangents
tmp = pi.Patch.Tangents[0];
pi.Patch.Tangents[0] = pi.Patch.Tangents[5];
pi.Patch.Tangents[5] = tmp;
tmp = pi.Patch.Tangents[1];
pi.Patch.Tangents[1] = pi.Patch.Tangents[4];
pi.Patch.Tangents[4] = tmp;
tmp = pi.Patch.Tangents[2];
pi.Patch.Tangents[2] = pi.Patch.Tangents[3];
pi.Patch.Tangents[3] = tmp;
tmp = pi.Patch.Tangents[6];
pi.Patch.Tangents[6] = pi.Patch.Tangents[7];
pi.Patch.Tangents[7] = tmp;
// Interior
tmp = pi.Patch.Interiors[0];
pi.Patch.Interiors[0] = pi.Patch.Interiors[3];
pi.Patch.Interiors[3] = tmp;
tmp = pi.Patch.Interiors[1];
pi.Patch.Interiors[1] = pi.Patch.Interiors[2];
pi.Patch.Interiors[2] = tmp;
// ** Symmetries tile colors
uint u,v;
uint countU = pi.OrderS/2+1;
uint countV = pi.OrderT+1;
for (v=0; v<countV; v++)
for (u=0; u<countU; u++)
{
// Store it in the tile info
uint index0 = u+v*(pi.OrderS+1);
uint index1 = (pi.OrderS-u)+v*(pi.OrderS+1);
// XChg
uint16 tmp = pi.TileColors[index0].Color565;
pi.TileColors[index0].Color565 = pi.TileColors[index1].Color565;
pi.TileColors[index1].Color565 = tmp;
}
// Smooth flags
uint flags = (uint)(pi.getSmoothFlag (0))<<2;
flags |= (uint)(pi.getSmoothFlag (2))<<0;
flags |= (uint)(pi.getSmoothFlag (1))<<1;
flags |= (uint)(pi.getSmoothFlag (3))<<3;
pi.Flags &= ~3;
pi.Flags |= flags;
}
// --- Symmetry of the bind info.
// --- Parse each patch and each edge
// For each patches
for (i=0 ; i<patchCount; i++)
{
// Ref on the patch info
CPatchInfo &pi = patchInfo[i];
// Xchg left and right
swap (pi.BindEdges[0], pi.BindEdges[2]);
swap (pi.BaseVertices[0], pi.BaseVertices[3]);
swap (pi.BaseVertices[1], pi.BaseVertices[2]);
// Flip edges
for (uint edge=0; edge<4; edge++)
{
// Ref on the patch info
CPatchInfo::CBindInfo &bindEdge = pi.BindEdges[edge];
uint next;
// Look if it is a bind ?
if ( (bindEdge.NPatchs>1) && (bindEdge.NPatchs!=5) )
{
for (next=0; next<(uint)bindEdge.NPatchs/2; next++)
{
swap (bindEdge.Next[bindEdge.NPatchs - next - 1], bindEdge.Next[next]);
swap (bindEdge.Edge[bindEdge.NPatchs - next - 1], bindEdge.Edge[next]);
}
}
// Look if we are binded on a reversed edge
uint bindCount = (bindEdge.NPatchs==5) ? 1 : bindEdge.NPatchs;
for (next=0; next<bindCount; next++)
{
// Left or right ?
if ( (bindEdge.Edge[next] & 1) == 0)
{
// Invert
bindEdge.Edge[next] += 2;
bindEdge.Edge[next] &= 3;
}
}
}
}
}
// For each patches
for (i=0 ; i<patchCount; i++)
{
// Tile infos
CPatchInfo &pi = patchInfo[i];
// Backup tiles
std::vector<CTileElement> tiles = pi.Tiles;
int u,v;
for (v=0; v<pi.OrderT; v++)
for (u=0; u<pi.OrderS; u++)
{
// U tile
int uSymmetry = symmetry ? (pi.OrderS-u-1) : u;
// Destination tile
CTileElement &element = pi.Tiles[u+v*pi.OrderS];
// Copy the orginal symmetrical element
element = tiles[uSymmetry+v*pi.OrderS];
// For each layer
for (int l=0; l<3; l++)
{
// Empty ?
if (element.Tile[l] != 0xffff)
{
// Get the tile index
uint tile = element.Tile[l];
uint tileRotation = element.getTileOrient (l);
// Get rot and symmetry for this tile
uint tileRotate = rotate;
bool tileSymmetry = symmetry;
bool goofy = symmetry && (zoneSymmetry.getTileState (i, uSymmetry+v*pi.OrderS, l) == CZoneSymmetrisation::Goofy);
// Transform the transfo
if (getTileSymmetryRotate (bank, tile, tileSymmetry, tileRotate))
{
// Transform the tile
if (!transformTile (bank, tile, tileRotation, tileSymmetry, (4-tileRotate)&3, goofy))
{
// Info
nlwarning ("Error getting symmetrical / rotated zone tile.");
return false;
}
}
else
{
// Info
nlwarning ("Error getting symmetrical / rotated zone tile.");
return false;
}
// Set the tile
element.Tile[l] = tile;
element.setTileOrient (l, (uint8)tileRotation);
}
}
// Empty ?
if (element.Tile[0]!=0xffff)
{
// Get 256 info
bool is256x256;
uint8 uvOff;
element.getTile256Info (is256x256, uvOff);
// 256 ?
if (is256x256)
{
// Get rot and symmetry for this tile
uint tileRotate = rotate;
bool tileSymmetry = symmetry;
uint tileRotation = tiles[uSymmetry+v*pi.OrderS].getTileOrient (0);
bool goofy = symmetry && (zoneSymmetry.getTileState (i, uSymmetry+v*pi.OrderS, 0) == CZoneSymmetrisation::Goofy);
// Transform the transfo
getTileSymmetryRotate (bank, element.Tile[0], tileSymmetry, tileRotate);
// Transform the case
transform256Case (bank, uvOff, tileRotation, tileSymmetry, (4-tileRotate)&3, goofy);
element.setTile256Info (true, uvOff);
}
}
}
}
// Ok
return true;
}
// ***************************************************************************
} // NL3D