khanat-opennel-code/code/ryzom/server/src/ai_service/ai_grp_fauna.cpp

1275 lines
35 KiB
C++

// Ryzom - MMORPG Framework <http://dev.ryzom.com/projects/ryzom/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "stdpch.h"
#include "ai_grp_fauna.h"
#include "ai_mgr_fauna.h"
#include "continent_inline.h"
#include "dyn_grp_inline.h"
using namespace MULTI_LINE_FORMATER;
using namespace NLMISC;
using namespace RYAI_MAP_CRUNCH;
using namespace AITYPES;
static char const* stateName(CSpawnGroupFauna::TState s)
{
switch (s)
{
case CSpawnGroupFauna::StateDespawned: return "DESPAWNED";
case CSpawnGroupFauna::StateSpawning: return "SPAWNING";
case CSpawnGroupFauna::StateGrazing: return "GRAZING";
case CSpawnGroupFauna::StateWandering: return "WANDERING";
case CSpawnGroupFauna::StateResting: return "RESTING";
default:
break;
}
return "UNKNOWN STATE";
}
// helper : get a fauna xyr zone from a base zone or a zone reference
static inline const CFaunaGenericPlace *getFaunaGenericPlace(const CAIPlace *place)
{
const CFaunaGenericPlace *faunaPlace = dynamic_cast<const CFaunaGenericPlace *>(place);
nlassert(faunaPlace);
return faunaPlace;
}
//////////////////////////////////////////////////////////////////////////////
// CGrpFauna static data //
//////////////////////////////////////////////////////////////////////////////
CGrpFauna::CCycleDef const CGrpFauna::cycles[] =
{
{ CSpawnGroupFauna::StateSpawning, CGrpFauna::SPAWN_TIME, CGrpFauna::SPAWN_PLACE },
{ CSpawnGroupFauna::StateGrazing, CGrpFauna::EAT_TIME, CGrpFauna::EAT_PLACE },
{ CSpawnGroupFauna::StateResting, CGrpFauna::REST_TIME, CGrpFauna::REST_PLACE }
};
uint32 const CGrpFauna::nbCycle = sizeof(CGrpFauna::CCycleDef) / sizeof(CGrpFauna::cycles);
//////////////////////////////////////////////////////////////////////////////
// CSpawnGroupFauna //
//////////////////////////////////////////////////////////////////////////////
CSpawnGroupFauna::CSpawnGroupFauna(CPersistent<CSpawnGroup>& owner, RYAI_MAP_CRUNCH::TAStarFlag denyFlag)
: CSpawnGroup(owner)
, _DespawnImmediately(false)
, _PathCont(denyFlag)
{
// variables for CAIMgrFauna's update prioritisation system
_UpdatePriority = 0; // 0..15 - priority class (distance based - 0 is highest priority)
_Leader = (CBotFauna*)NULL;
_Timer.set(0);
// pick a spawn place
sint spawnPlace = getPersistent().getNextPlace(NULL, CAIPlaceXYRFauna::FLAG_SPAWN);
if (spawnPlace == CGrpFauna::INVALID_PLACE)
{
std::vector<uint> candidates;
// seek place with the smallest index
sint minIndex = INT_MAX;
for (uint k = 0; k < getPersistent().places().size(); ++k)
{
const CFaunaGenericPlace *place = getFaunaGenericPlace(getPersistent().places()[k]);
minIndex = std::min((sint) place->getIndex(), minIndex);
}
for (uint k = 0; k < getPersistent().places().size(); ++k)
{
const CFaunaGenericPlace *place = getFaunaGenericPlace(getPersistent().places()[k]);
if ((sint) place->getIndex() == minIndex)
{
candidates.push_back(k);
}
}
spawnPlace = (sint) candidates[rand() % candidates.size()];
//nlwarning("No spawn place found for group %s, using place with smallest index", getPersistent().getName().c_str());
}
setPlace(spawnPlace);
_CenterPos = _TargetPlace->midPos();
// make sure memory's been allocated for the bots
if (bots().size()==0)
getPersistent().allocateBots();
if (bots().size()!=0)
{
uint32 const spawnTimer = getPersistent().timer(CGrpFauna::SPAWN_TIME);
_Timer.set(spawnTimer);
}
// setup the update priority system variables
_LastUpdate = CTimeInterface::gameCycle();
_DeltaTime = 1;
_CurrentCycle = 0;
setMustDespawnBots(false);
}
CSpawnGroupFauna& CSpawnBotFauna::spawnGrp()
{
return static_cast<CSpawnGroupFauna&>(CSpawnBot::spawnGrp());
}
void CSpawnGroupFauna::despawnGrp() // critical code (despawn 'this' object).
{
CGrpFauna* faunaGrpPtr = &getPersistent();
faunaGrpPtr->mgr().addToSpawn(faunaGrpPtr);
faunaGrpPtr->despawnGrp();
}
void CSpawnGroupFauna::recalcUpdatePriorityDeltaAndGroupPos()
{
// recalculate the priority delta score for the group based on players in vision
bool speedUpdate = false;
sint32 grpPosx = 0;
sint32 grpPosy = 0;
sint32 nbBots = 0;
FOREACH(it, CCont<CBot>, bots())
{
CBotFauna *bot=NLMISC::safe_cast<CBotFauna*>(*it);
CSpawnBotFauna *botFauna=bot->getSpawn();
if (botFauna)
{
if (botFauna->isAlive())
{
const CAIPosMirror &pos=botFauna->pos();
grpPosx+=(sint32)(pos.x().asInt()*(1.0/1000.0));
grpPosy+=(sint32)(pos.y().asInt()*(1.0/1000.0));
nbBots++;
}
if (botFauna->havePlayersAround())
{
speedUpdate=true;
break;
}
}
}
if (nbBots>0)
{
_CenterPos = CAIVector(grpPosx/nbBots,grpPosy/nbBots);
}
if (speedUpdate)
_UpdatePriority = 1;
else
_UpdatePriority = 31;
// if players are approaching then crop our move time
uint32 curTime = CTimeInterface::gameCycle ();
if (((sint32)(curTime-_LastUpdate))>(_UpdatePriority+1))
_LastUpdate = curTime-(_UpdatePriority+1);
_DeltaTime = curTime-_LastUpdate;
}
CBotFauna* CSpawnGroupFauna::findLeader()
{
CBotFauna* possibleLeader = NULL;
CCont<CBot >::iterator it = bots().begin();
CCont<CBot >::iterator itEnd = bots().end();
while (it!=itEnd)
{
CBotFauna* botPtr = static_cast<CBotFauna*>(*it);
if (botPtr->isSpawned()) // if bot is spawned
{
if (botPtr->getSpawnObj()->isAlive()) // is alive
{
possibleLeader=botPtr;
if (_TargetPlace->atPlace(possibleLeader->getSpawn()->pos())) // and eventually in place
return possibleLeader;
}
}
++it;
}
return possibleLeader;
}
void CSpawnGroupFauna::update()
{
H_AUTO(GrpFaunaUpdate);
++AISStat::GrpTotalUpdCtr;
++AISStat::GrpFaunaUpdCtr;
getPersistent().updateStateInstance();
if (_CurrentCycle==std::numeric_limits<uint32>::max())
return;
// Respawn
// breakable
{
H_AUTO(GrpFaunaUpdateDealWithDead);
checkDespawn ();
if (nbBotToRespawn()>0)
{
if (nbSpawnedBot()>0) // (getPersistent().bots().size()/2))
{
if (getPersistent().timeAllowSpawn ())
{
checkRespawn();
}
}
else
{
// critical code (despawn 'this' object).
despawnGrp();
return; // forced becoz the group is despawn and respawned (will be updated next time).
}
}
}
// recalculate our priority rating in function of distance from player
// if players are approaching then crop our move time
recalcUpdatePriorityDeltaAndGroupPos();
// identify the leader, call type-dependent update and calculate group position and radius
{
H_AUTO(GrpFaunaUpdateByType);
H_TIME(GrpFaunaUpdateFindLeader, _Leader = findLeader(););
// locate the first live bot and treat them as the group leader
// update the state variable (think about changing state)
H_TIME(GrpFaunaUpdateCheckTimer, checkTimers(););
H_TIME(GrpFaunaUpdateGeneralUpdate, generalUpdate(););
// re-find leader as it could have been despawn ..
_Leader = findLeader();
}
// record the current tick as last update time for the group
_LastUpdate = CTimeInterface::gameCycle();
}
void CSpawnGroupFauna::generalUpdate(TState state)
{
H_TIME(GrpFaunaReorganize, reorganize(bots().begin(), bots().end()););
{
H_AUTO(GrpFaunaUpdDespawnTest);
if ( !mustDespawnBots()
&& getUpdatePriority ()>(2<<3)
&& !getPersistent().timeAllowSpawn() ) // 40*3 -> more than 120 meters far from players
{
setMustDespawnBots (true);
}
}
if (state==StateUndefined)
state=CGrpFauna::cycles[_CurrentCycle]._Activity;
// call a type-dependent update
switch (getPersistent().getType())
{
case FaunaTypeHerbivore:
case FaunaTypePredator:
{
H_AUTO(GrpFaunaUpdNonPlant);
switch (state) // updateAnimals.
{
case StateDespawned: break;
case StateSpawning: updateSpawning(); break;
case StateGrazing: updateActivity(ACTIVITY_GRAZING); break;
case StateWandering: updateActivity(ACTIVITY_WANDERING); break;
case StateResting: updateActivity(ACTIVITY_RESTING); break;
default: nlwarning("CSpawnGroupFauna::updateAnimals FAILED because state not valid: %d",state);
}
}
break;
case FaunaTypePlant:
{
H_AUTO(GrpFaunaUpdPlant);
// run the state behaviour code
switch (state) // updatePlants.
{
case StateDespawned: break;
case StateSpawning: updateSpawning(); break;
case StateGrazing: updateActivity(ACTIVITY_PLANTIDLE); break;
case StateWandering: updateActivity(ACTIVITY_PLANTIDLE); break;
case StateResting: updateActivity(ACTIVITY_PLANTIDLE); break;
default: nlwarning("CSpawnGroupFauna::updatePlants FAILED because state not valid: %d",state);
}
}
break;
default: nlwarning("CSpawnGroupFauna::update() FAILED because group type not valid: %d",getPersistent().getType());
}
}
bool CSpawnGroupFauna::isSpawning()
{
return CGrpFauna::cycles[_CurrentCycle]._Activity == StateSpawning;
}
void CSpawnGroupFauna::updateSpawning()
{
// check if we have some bots to spawn to reach timer (proportionnaly).
if ( (!mustDespawnBots())
&& ( ( _Timer.timeRemaining()==0
&& nbSpawnedBot()<bots().size())
|| ( _Timer.totalTime()!=0
&& nbSpawnedBot()<((bots().size()*_Timer.timeSinceStart())/_Timer.totalTime()))
) )
{
uint i,j;
uint targetCount=0;
#ifdef NL_DEBUG
nlassert(getPersistent().populations()[getPersistent()._CurPopulation]);
#endif
CPopulation& curPop=*getPersistent().populations()[getPersistent()._CurPopulation];
for (i=0;i<curPop.size();++i)
targetCount+=curPop[i].getBotCount(getPersistent().getCountMultiplierFlag());
// if no more bots to spawn then change state...
if (bots()[targetCount-1]->isSpawned())
{
incCurrentCycle();
generalUpdate();
return;
}
// identify the bot to spawn
uint count=0;
{
CBot* faunaPt=NULL;
for (i=0;i<curPop.size();++i)
{
CPopulationRecord &popRecord=curPop[i];
for (j=0;j<popRecord.getBotCount(getPersistent().getCountMultiplierFlag());++j,++count)
{
if (!bots()[count]->isSpawned())
break;
}
if (j<popRecord.getBotCount(getPersistent().getCountMultiplierFlag()))
break;
}
}
// by definition there must be a bot type
nlassert(i<curPop.size());
// spawn the bot
{
CBotFauna *faunaPt=NLMISC::safe_cast<CBotFauna*>(bots()[count]);
faunaPt->setSheet (/*const_cast<AISHEETS::ICreature *>(*/curPop[i].getCreatureSheet()/*)*/);
faunaPt->reSpawn ();
}
// if this is the first bot to be spawned in the group then st up the leader pointer to point to it
// and set the group type
if (count==0)
{
_Leader = findLeader();
}
}
// to all intent and purpose consider that our bots are wandering
generalUpdate(StateWandering);
}
void CSpawnGroupFauna::incCurrentCycle()
{
setCurrentCycle(_CurrentCycle + 1);
}
void CSpawnGroupFauna::setCurrentCycle(uint32 cycle)
{
if (getPersistent().places().isEmpty())
{
nlwarning("No places in fauna group %s", getPersistent().getName().c_str());
return;
}
// did we start a new cycle ?
if (cycle>=(sizeof(CGrpFauna::cycles)/sizeof(CGrpFauna::CCycleDef)))
cycle=1;
const CFaunaGenericPlace *targetPlacePtr = getFaunaGenericPlace(targetPlace());
sint nextPlace = CGrpFauna::INVALID_PLACE;
// search a place that match current cycle
// First we search a neighbour place that has wanted activity
// otherwise we change activity to the one we found
switch(CGrpFauna::cycles[cycle]._Place)
{
case CGrpFauna::EAT_PLACE:
nextPlace = getPersistent().getNextPlace(targetPlacePtr, CAIPlaceXYRFauna::FLAG_EAT);
if (nextPlace == CGrpFauna::INVALID_PLACE)
{
nextPlace = getPersistent().getNextPlace(targetPlacePtr, CAIPlaceXYRFauna::FLAG_REST);
if (nextPlace != CGrpFauna::INVALID_PLACE)
{
cycle = CGrpFauna::REST_PLACE; // force to rest
}
else
{
nextPlace = targetPlace()->getChildIndex();
// remains in the same place
if (!targetPlacePtr->getFlag(CAIPlaceXYRFauna::FLAG_EAT))
{
// can't eat there, so force to rest
cycle = CGrpFauna::REST_PLACE; // force to rest
}
}
}
break;
case CGrpFauna::REST_PLACE:
nextPlace = getPersistent().getNextPlace(targetPlacePtr, CAIPlaceXYRFauna::FLAG_REST);
if (nextPlace == CGrpFauna::INVALID_PLACE)
{
nextPlace = getPersistent().getNextPlace(targetPlacePtr, CAIPlaceXYRFauna::FLAG_EAT);
if (nextPlace != CGrpFauna::INVALID_PLACE)
{
cycle = CGrpFauna::EAT_PLACE; // force to eat
}
else
{
nextPlace = targetPlace()->getChildIndex();
// remains in the same place
if (!targetPlacePtr->getFlag(CAIPlaceXYRFauna::FLAG_REST))
{
// can't rest there, so force to eat
cycle = CGrpFauna::EAT_PLACE; // force to rest
}
}
}
break;
}
_CurrentCycle = cycle;
setPlace(nextPlace);
if (_CurrentCycle==CGrpFauna::EAT_PLACE)
{
for (CCont<CBot >::iterator it=bots().begin(), itEnd=bots().end();it!=itEnd;++it)
{
CBotFauna *const faunaBot=NLMISC::safe_cast<CBotFauna*>(*it);
CSpawnBotFauna *const faunaSpawnBot= faunaBot->getSpawn();
if (!faunaSpawnBot)
continue;
faunaSpawnBot->hungry()=faunaSpawnBot->radius();
}
}
}
void CSpawnGroupFauna::updateActivity(TProfiles activity)
{
FOREACH(it, CCont<CBot>, bots())
{
CBotFauna* bot=NLMISC::safe_cast<CBotFauna*>(*it);
if (bot->isSpawned())
bot->getSpawn()->update(activity,getDt());
}
}
void CSpawnGroupFauna::checkTimers()
{
if (CGrpFauna::cycles[_CurrentCycle]._Activity==StateSpawning)
return;
if (!_ArrivedInZone) // if we are changing the current activity zone.
{
if ( !_Leader.isNULL()
&& _Leader->isSpawned())
{
const CAIPos leaderPos(_Leader->getSpawn()->pos());
const CAIPos midPos=_TargetPlace->midPos(); // better is very possible.
if (leaderPos.distTo(midPos)<_TargetPlace->getRadius()) // si leader dans la zone.
{
_ArrivedInZone=true; // we desactivate the boolean.
const CFaunaGenericPlace *faunaPlace = getFaunaGenericPlace(targetPlace());
NLMISC::CRandom rnd;
uint32 stayTime = faunaPlace->getMinStayTime() + (sint32) (rnd.frand() * ((sint32) faunaPlace->getMaxStayTime() - (sint32) faunaPlace->getMinStayTime()));
_Timer.set(stayTime);
/*
nlwarning("Group %s : Setting stay time to %d in place %s with index %d",
getPersistent().getName().c_str(),
(int) stayTime,
faunaPlace->getName().c_str(),
(int) faunaPlace->getIndex());
*/
}
}
}
else
{
// nlwarning("Group %s : Timer = %d", getPersistent().getName().c_str(), (int) (100 * _Timer.timeRemaining() / _Timer.totalTime()));
if (_Timer.test()) // si fin de timer.
incCurrentCycle();
}
}
void CSpawnGroupFauna::spawnBots()
{
setMustDespawnBots(false);
_CurrentCycle = 0; // first activity == spawning.
nlassert(bots().size()>0);
_Timer.set(getPersistent().timer(CGrpFauna::SPAWN_TIME));
}
void CSpawnGroupFauna::despawnBots(bool immediately)
{
setDespawnImmediately(immediately);
setMustDespawnBots();
}
CAIPos const& CSpawnGroupFauna::magnetPos() const
{
return targetPlace()->midPos();
}
float CSpawnGroupFauna::magnetRadiusNear() const
{
return targetPlace()->getRadius()*(7.0f/8.0f);
}
float CSpawnGroupFauna::magnetRadiusFar() const
{
return targetPlace()->getRadius()*(9.0f/8.0f);
}
CGrpFauna& CSpawnGroupFauna::getPersistent()
{
return static_cast<CGrpFauna&>(CSpawnGroup::getPersistent());
}
uint32 CSpawnGroupFauna::getCurrentCycleTime()
{
return getPersistent().timer(CGrpFauna::cycles[_CurrentCycle]._Time);
}
//////////////////////////////////////////////////////////////////////////////
// CGrpFauna //
//////////////////////////////////////////////////////////////////////////////
uint32 CGrpFauna::refTimer(TTime time)
{
switch(time)
{
case EAT_TIME: return 250;
case REST_TIME: return 250;
case SPAWN_TIME: return 30;
case CORPSE_TIME: return 120;
case RESPAWN_TIME: return 45; // "Backward" compatibility: 45 seconds after the corpse is despawned (after corpse time, or when looted)
default:
nlassert(0);
break;
}
return 0;
}
CGrpFauna::CGrpFauna(CMgrFauna* mgr, CAIAliasDescriptionNode* aliasTree, RYAI_MAP_CRUNCH::TAStarFlag denyFlags)
: CGroup(mgr, denyFlags, aliasTree)
, CDynGrpBase()
, CPersistentStateInstance(*mgr->getStateMachine())
{
// state
_CurPopulation = std::numeric_limits<uint32>::max();
_CurrentCycle = std::numeric_limits<uint32>::max();
// default values.
setTimer(EAT_TIME, refTimer(EAT_TIME));
setTimer(REST_TIME, refTimer(REST_TIME));
setTimer(SPAWN_TIME, refTimer(SPAWN_TIME));
setTimer(CORPSE_TIME, refTimer(CORPSE_TIME));
setTimer(RESPAWN_TIME, refTimer(RESPAWN_TIME));
}
void CGrpFauna::stateChange(CAIState const* oldState, CAIState const* newState)
{
}
std::string CGrpFauna::getOneLineInfoString() const
{
return std::string("Fauna group '") + getName() + "'";
}
std::vector<std::string> CGrpFauna::getMultiLineInfoString() const
{
std::vector<std::string> container;
pushTitle(container, "CGrpFauna");
pushEntry(container, "id=" + CGroup::getIndexString());
container.back() += " alias=" + getAliasString();
container.back() += " name=" + getName();
pushEntry(container, "fullname=" + CGroup::getFullName());
FOREACHC(it, CCont<CPopulation>, _Populations)
{
CPopulation const* pop = *it;
uint32 index = pop->getChildIndex();
pushEntry(container, "- population["+toString(index)+"]: "+((_CurPopulation==index)? "* ACTIVE *": ""));
for (uint j=0; j<pop->size(); ++j)
{
CPopulationRecord& popRecord = (*pop)[j];
pushEntry(container, "bots:");
container.back() += " count="+toString(popRecord.getBotCount(getCountMultiplierFlag()));
if (popRecord.getCreatureSheet()==NULL)
container.back() += " <no sheet>";
else
container.back() += " sheet='"+popRecord.getCreatureSheet()->SheetId().toString()+"'";
}
}
FOREACHC(it, CCont<CBot>, bots())
{
std::vector<std::string> strings = it->getMultiLineInfoString();
FOREACHC(itString, std::vector<std::string>, strings)
container.push_back(" " + *itString);
}
pushFooter(container);
return container;
}
IAliasCont* CGrpFauna::getAliasCont(TAIType type)
{
switch(type)
{
case AITypePlaceFauna:
case AITypePlace:
return &_Places;
case AITypeGrpFaunaPop:
return &_Populations;
default:
return NULL;
}
}
CAliasTreeOwner* CGrpFauna::createChild(IAliasCont* cont, CAIAliasDescriptionNode* aliasTree)
{
if (!cont)
return NULL;
CAliasTreeOwner* child = NULL;
switch (aliasTree->getType())
{
// create the child and adds it to the corresponding position.
case AITypePlaceFauna:
child = new CAIPlaceXYRFauna(this, aliasTree);
break;
case AITypePlace:
{
std::string const& name = aliasTree->getName();
CAIPlaceXYRFauna *faunaPlace = new CAIPlaceXYRFauna(this, aliasTree);
child = faunaPlace;
uint placeIndex = faunaPlace->setupFromOldName(name);
nlassert(placeIndex!=std::numeric_limits<uint>::max());
if (placeIndex!=std::numeric_limits<uint>::max())
cont->addAliasChild(child, placeIndex);
return child;
}
break;
case AITypeGrpFaunaPop:
child = new CPopulation(this, aliasTree);
break;
}
if (child)
cont->addAliasChild(child);
return child;
}
void CGrpFauna::displayPlaces(CStringWriter& stringWriter) const
{
FOREACHC(it, CCont<CAIPlace>, _Places)
{
it->display(stringWriter);
}
}
CGrpFauna::~CGrpFauna()
{
if (isSpawned()) // to avoid bad CDbgPtr link interpretation
{
despawnGrp();
}
// unlink all child persistent state instance
while (!_PSIChilds.empty())
{
_PSIChilds.back()->setParentStateInstance(NULL);
}
_PSIChilds.clear();
}
void CGrpFauna::setEvent(uint eventId)
{
nlassert(eventId<10);
processStateEvent(getEventContainer().EventUserEvent[eventId]);
}
void CGrpFauna::serviceEvent (const CServiceEvent &info)
{
CGroup::serviceEvent(info);
if ((info.getServiceName() == "EGS") && (info.getEventType() == CServiceEvent::SERVICE_UP))
{
processStateEvent(getEventContainer().EventEGSUp);
}
}
NLMISC::CSmartPtr<CSpawnGroup> CGrpFauna::createSpawnGroup()
{
return new CSpawnGroupFauna(*this, getAStarFlag());
}
bool CGrpFauna::spawn()
{
if (!getSpawnCounter().remainToMax())
return false;
setStartState(getStartState()); // stateInstance.
return spawnPop(std::numeric_limits<uint>::max());
}
bool CGrpFauna::timeAllowSpawn(uint32 popVersion) const
{
if (popVersion==12345)
{
popVersion = _CurPopulation;
}
CPopulation* popPtr = _Populations[popVersion];
#ifdef NL_DEBUG
nlassert(popPtr);
#endif
if (!popPtr)
{
return false;
}
TSpawnType st = popPtr->getSpawnType();
bool const& isDay = CTimeInterface::isDay();
return (st==SpawnTypeAlways) || (isDay&&st==SpawnTypeDay) || (!isDay&&st==SpawnTypeNight);
}
bool CGrpFauna::spawnPop(uint popVersion)
{
if (places().isEmpty()) return false;
for (uint k = 0; k < places().size(); ++k)
{
if (!places()[k]->worldValidPos().isValid()) return false;
}
/*
if ( !places()[SPAWN_PLACE]->worldValidPos().isValid()
|| !places()[EAT_PLACE]->worldValidPos().isValid()
|| !places()[REST_PLACE]->worldValidPos().isValid()) // coz time is not initialized yet ..
return false;*/
// check compatibility.
/*
{
RYAI_MAP_CRUNCH::CCompatibleResult res;
areCompatiblesWithoutStartRestriction(places()[SPAWN_PLACE]->worldValidPos(), places()[EAT_PLACE]->worldValidPos(), getAStarFlag(), res);
if (!res.isValid())
return false;
areCompatiblesWithoutStartRestriction(places()[SPAWN_PLACE]->worldValidPos(), places()[REST_PLACE]->worldValidPos(), getAStarFlag(), res);
if (!res.isValid())
return false;
areCompatiblesWithoutStartRestriction(places()[EAT_PLACE]->worldValidPos(), places()[REST_PLACE]->worldValidPos(), getAStarFlag(), res);
if (!res.isValid())
return false;
}
*/
// check each arc of the graph
for (uint k = 0; k < places().size(); ++k)
{
nlassert(_Places[k]);
checkArcs(*_Places[k]);
}
// check flags ..
for (uint32 i=0;i<places().size();i++)
{
if (!places()[i]->worldValidPos().isValid())
return false;
const RYAI_MAP_CRUNCH::TAStarFlag flags=places()[i]->worldValidPos().getTopologyRef().getCstTopologyNode().getFlags();
if ((flags&getAStarFlag())!=0)
return false;
}
// check the validity of the input parameter
if (popVersion!=std::numeric_limits<uint>::max() && popVersion>=_Populations.size())
{
nlwarning("CGrpFauna::spawn(idx) FAILED for group %s because idx (%d) >= _Populations.size() (%d)",this->CGroup::getFullName().c_str(),popVersion,_Populations.size());
return false;
}
popVersion = std::numeric_limits<uint>::max();
// if we are in a cycle.
if (_CurrentCycle != std::numeric_limits<uint32>::max())
{
Cycle const& cycle = _Cycles[_CurrentCycle];
// this to avoid bug dues to bad data initialization.
do
{
++_CurrentCycleIndex;
}
while ( _CurrentCycleIndex<(sint32)cycle._PopList.size()
&& !_Populations[cycle._PopList[_CurrentCycleIndex]]);
if (_CurrentCycleIndex<(sint32)cycle._PopList.size())
{
popVersion=cycle._PopList[_CurrentCycleIndex];
if (!timeAllowSpawn(popVersion))
{
popVersion = std::numeric_limits<uint>::max();
}
}
if (popVersion == std::numeric_limits<uint>::max())
{
_CurrentCycle = std::numeric_limits<uint32>::max();
}
}
// if the population version has not been specified then select one at weighted random with day/night difference.
if (popVersion == std::numeric_limits<uint>::max())
{
uint32 totalWeight = 0;
// we can precalculate this, but it won't appears so much to be called.
FOREACH(it, CCont<CPopulation>, _Populations)
{
CPopulation const& pop = *(*it);
if (!timeAllowSpawn(pop.getChildIndex()))
continue;
totalWeight += pop.getWeight();
}
if (totalWeight==0)
return false;
{
sint32 rnd = CAIS::rand32(totalWeight);
FOREACH(it, CCont<CPopulation>, _Populations)
{
CPopulation const& pop = *(*it);
if (!timeAllowSpawn(pop.getChildIndex()))
continue;
rnd -= pop.getWeight();
if (rnd>0) // we found the population to spawn. :)
continue;
popVersion=pop.getChildIndex();
break;
}
}
#if !FINAL_VERSION
nlassert(popVersion != std::numeric_limits<uint>::max());
#endif
if (popVersion == std::numeric_limits<uint>::max())
return false;
// find if we are starting a new cycle ..
for (uint32 i=0;i<_Cycles.size();i++)
{
nlassert(_Cycles[i]._PopList.size()>0);
if (_Cycles[i]._PopList[0]!=popVersion)
continue;
_CurrentCycle = i;
_CurrentCycleIndex = 0;
}
}
if (popVersion >= _Populations.size())
{
nlwarning("Problem with pop size for group id %s, NAME = %s", this->CGroup::getFullName().c_str(), getName().c_str() );
return false;
}
// setup the pointer to the current population
_CurPopulation = popVersion;
// check that we have a defined spawn location
if (!_Places[SPAWN_PLACE])
{
nlwarning("CGrpFauna::spawn(idx) FAILED for group %s because _spawnPlace==NULL",this->CGroup::getFullName().c_str());
return false;
}
// if the group is already spawned despawn it
if (isSpawned())
{
despawnGrp();
}
nlassert(_CurPopulation != std::numeric_limits<uint32>::max());
//////////////////////////////////////////////////////////////////////////
// Init the group type.
setType ((*_Populations[_CurPopulation])[0].getCreatureSheet()->FaunaType()); // gets the first population record of the population to spawn.
{
uint32 botCount=0;
uint32 i;
CPopulation& curPop = *populations()[_CurPopulation];
for (i=0; i<curPop.size(); ++i)
{
botCount += curPop[i].getBotCount(getCountMultiplierFlag());
if ( curPop[i].getBotCount(getCountMultiplierFlag()) == 0
|| curPop[i].getCreatureSheet()->FaunaType() == getType())
continue;
if (getGroupDesc()) // Dyn system.
{
nlwarning("****** WARNING: Different Fauna Type in Template Group %s", getGroupDesc()->getFullName().c_str());
}
else
{
nlwarning("****** WARNING: Different Fauna Type in group %s", this->CGroup::getFullName().c_str());
}
}
bots().setChildSize(botCount); // set the good size for bots vector.
for (i=0;i<botCount;i++)
_Bots.addChild(new CBotFauna(getType(), this), i);
}
return CGroup::spawn();
}
void CGrpFauna::despawnGrp()
{
CGroup::despawnGrp();
_CurPopulation = std::numeric_limits<uint32>::max();
}
// reads cycle from primitive (string representation).
void CGrpFauna::setCyles(std::string const& cycles)
{
uint32 strIndex = 0;
uint32 curCycle = std::numeric_limits<uint32>::max();
while (strIndex<cycles.size())
{
char carac = cycles[++strIndex];
if (carac>='A' && carac<='Z')
carac += 'a'-'A';
if (carac>='a' && carac<='z')
{
if (curCycle == std::numeric_limits<uint32>::max())
{
curCycle = (uint32)_Cycles.size();
_Cycles.push_back(Cycle());
}
Cycle& CycleRef = _Cycles[curCycle];
CycleRef._PopList.push_back((uint16)(carac-'a'));
}
else
{
curCycle = std::numeric_limits<uint32>::max();
}
}
}
void CGrpFauna::setPopulation(CPopulation* pop)
{
CPopulation* sameAliasPop = NULL;
uint32 index = std::numeric_limits<uint32>::max();
if (pop)
sameAliasPop = _Populations.getChildByAlias(pop->getAlias());
if (pop && pop->size()==0) // no population record :(
pop=NULL;
if (sameAliasPop) // Alias already present ?
{
index = sameAliasPop->getChildIndex();
_Populations.addChild(pop, index); // automatic deletion with smart pointers
}
else
{
_Populations.addChild(pop); // else simply add it to the populations container
}
// if it was the current population, respawn it. (to check with designers?)
if (index==_CurPopulation)
{
if (isSpawned()) // if spawned, despawn.
getSpawnObj()->despawnGrp();
}
}
//----------------------------------------------------------------------------
// private utilities
//----------------------------------------------------------------------------
void CGrpFauna::allocateBots()
{
uint maxPopulation = 0;
// work out how much space we need
CCont<CPopulation>::iterator it = populations().begin();
CCont<CPopulation>::iterator itEnd = populations().end();
while (it!=itEnd)
{
CPopulation* pop = *(it);
uint count=0;
for (sint j=(sint)pop->size()-1;j>=0;j--)
count+=(*pop)[j].getBotCount(getCountMultiplierFlag());
if (count>maxPopulation)
maxPopulation=count;
++it;
}
_Bots.setChildSize(maxPopulation);
for (uint32 i=0;i<maxPopulation;i++)
_Bots.addChild(new CBotFauna(getType(),this),i);
}
// Methods for setting up static data ----------------------------------------
void CGrpFauna::setType(TFaunaType type)
{
faction().removeProperties();
if (type==AITYPES::FaunaTypePredator)
faction().addProperty(AITYPES::CPropertyId("Predator"));
_Type = type;
}
CMgrFauna& CGrpFauna::mgr() const
{
return *static_cast<CMgrFauna*>(getOwner());
}
CAIS::CCounter& CGrpFauna::getSpawnCounter()
{
return CAIS::instance()._FaunaBotCounter;
}
void CGrpFauna::lastBotDespawned()
{
// send message
processStateEvent(getEventContainer().EventLastBotDespawned);
}
void CGrpFauna::firstBotSpawned()
{
setFirstBotSpawned();
}
sint CGrpFauna::getNextPlace(const CFaunaGenericPlace *startPlace, CAIPlaceXYRFauna::TFlag wantedFlag) const
{
nlassert(wantedFlag < CAIPlaceXYRFauna::FLAG_COUNT);
std::vector<uint> candidates;
std::vector<uint> activeCandidates;
if (!startPlace)
{
for (uint k = 0; k < _Places.size(); ++k)
{
const CFaunaGenericPlace *place = getFaunaGenericPlace(_Places[k]);
if (place->getFlag(wantedFlag))
{
if (place->getActive())
{
activeCandidates.push_back(_Places[k]->getChildIndex());
}
else
{
candidates.push_back(_Places[k]->getChildIndex());
}
}
}
}
else
{
sint minIndex = INT_MAX;
sint firstIndex = INT_MAX;
if (startPlace->getReachNext())
{
for (uint k = 0; k < _Places.size(); ++k)
{
const CFaunaGenericPlace *place = getFaunaGenericPlace(_Places[k]);
firstIndex = std::min(firstIndex, (sint) place->getIndex());
if (place->getIndex() < minIndex && place->getIndex() > startPlace->getIndex())
{
minIndex = place->getIndex();
}
}
minIndex = std::max(minIndex, firstIndex);
for (uint k = 0; k < _Places.size(); ++k)
{
const CFaunaGenericPlace *place = getFaunaGenericPlace(_Places[k]);
if ((sint) place->getIndex() == minIndex)
{
if (place->getActive())
{
activeCandidates.push_back(_Places[k]->getChildIndex());
}
else
{
candidates.push_back(_Places[k]->getChildIndex());
}
}
}
}
// includes all places reachable from the arcs list
for (uint k = 0; k < _Places.size(); ++k)
{
const CFaunaGenericPlace *place = getFaunaGenericPlace(_Places[k]);
if (place != startPlace && place->getFlag(wantedFlag))
{
// if this place is reachable from current place arcs ...
if (std::find(startPlace->getArcs().begin(), startPlace->getArcs().end(), place->getIndex()) != startPlace->getArcs().end())
{
// ... then it is a candidate.
if (place->getActive())
{
activeCandidates.push_back(_Places[k]->getChildIndex());
}
else
{
candidates.push_back(_Places[k]->getChildIndex());
}
}
}
}
}
// active vertices are taken in priority
// nlwarning("%d active place, %d unactive places", (int) activeCandidates.size(), (int) candidates.size());
if (!activeCandidates.empty())
{
return (sint) activeCandidates[rand() % activeCandidates.size()];
}
// if current place is valid then don't move
if (startPlace && startPlace->getActive()) return CAIPlaceXYRFauna::INVALID_PLACE;
// otherwise select a place in unactive places
if (candidates.empty()) return CAIPlaceXYRFauna::INVALID_PLACE;
return (sint) candidates[rand() % candidates.size()];
}
bool CGrpFauna::checkArcs(const CAIPlace &startPlace) const
{
const CFaunaGenericPlace *startPlaceGeneric = getFaunaGenericPlace(&startPlace);
// TODO nico : this function has a lot of similarities with CGrpFauna::getNextPlace
// adding a getArcs function would be nice
sint minIndex = INT_MAX;
sint firstIndex = INT_MAX;
if (startPlaceGeneric->getReachNext())
{
for (uint k = 0; k < _Places.size(); ++k)
{
const CFaunaGenericPlace *place = getFaunaGenericPlace(_Places[k]);
firstIndex = std::min(firstIndex, (sint) place->getIndex());
if (place->getIndex() < minIndex && place->getIndex() > startPlaceGeneric->getIndex())
{
minIndex = place->getIndex();
}
}
minIndex = std::max(minIndex, firstIndex);
for (uint k = 0; k < _Places.size(); ++k)
{
const CFaunaGenericPlace *place = getFaunaGenericPlace(_Places[k]);
if ((sint) place->getIndex() == minIndex)
{
RYAI_MAP_CRUNCH::CCompatibleResult res;
areCompatiblesWithoutStartRestriction(startPlace.worldValidPos(), _Places[k]->worldValidPos(), getAStarFlag(), res);
if (!res.isValid()) return false;
}
}
}
// includes all places reachable from the arcs list
for (uint k = 0; k < _Places.size(); ++k)
{
const CFaunaGenericPlace *place = getFaunaGenericPlace(_Places[k]);
if (place != startPlaceGeneric)
{
if (std::find(startPlaceGeneric->getArcs().begin(), startPlaceGeneric->getArcs().end(), place->getIndex()) != startPlaceGeneric->getArcs().end())
{
// this place is in current arc list
RYAI_MAP_CRUNCH::CCompatibleResult res;
areCompatiblesWithoutStartRestriction(startPlace.worldValidPos(), _Places[k]->worldValidPos(), getAStarFlag(), res);
if (!res.isValid()) return false;
}
}
}
return true;
}
void CSpawnGroupFauna::setPlace(int placeIndex)
{
const CFaunaGenericPlace *place = getFaunaGenericPlace(getPersistent().places()[placeIndex]);
//nlwarning("Going to place %s with index %d", getPersistent().places()[placeIndex]->getName().c_str(), place->getIndex());
if ((int) getPersistent().places().size() <= placeIndex)
{
nlwarning("Bad place index for fauna group %s", getPersistent().getName().c_str());
}
// const CFaunaGenericPlace *faunaPlace = getFaunaGenericPlace(getPersistent().places()[placeIndex]);
// nlwarning("Group %s : Chosing place %s (%d) with graph index %d", getPersistent().getName().c_str(), faunaPlace->getName().c_str(), placeIndex, (int) faunaPlace->getIndex());
_TargetPlace = getPersistent().places()[placeIndex];
#if !FINAL_VERSION
const RYAI_MAP_CRUNCH::TAStarFlag flags=targetPlace()->worldValidPos().getTopologyRef().getCstTopologyNode().getFlags();
nlassert((flags&getPersistent().getAStarFlag())==0);
#endif
_PathCont.setDestination(targetPlace()->getVerticalPos(), targetPlace()->worldValidPos());
_ArrivedInZone = false;
}
#include "event_reaction_include.h"