khanat-opennel-code/code/nel/include/nel/misc/smart_ptr.h

922 lines
25 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef NL_SMART_PTR_H
#define NL_SMART_PTR_H
#include "types_nl.h"
#include "debug.h"
#include "stream.h"
#include <cstdio>
namespace NLMISC
{
// ***************************************************************************
/**
* To use CSmartPtr or CRefPtr, derive from this class.
* Your class doens't have to be virtual, or doesn't have to provide a virtual dtor.
* \author Lionel Berenguier
* \author Nevrax France
* \date 2000
*/
class CRefCount
{
public:
/// Destructor which release pinfo if necessary.
~CRefCount();
/// Default constructor init crefs to 0.
CRefCount() { crefs = 0; pinfo=static_cast<CPtrInfo*>(&NullPtrInfo); }
/* The instance handle.
Can't put those to private since must be used by CRefPtr (and friend doesn't work with template).
Use struct CPtrInfoBase / CPtrInfo idiom for NullPtrInfo, because of problems of static constructor:
NullPtrInfo must be init BEFORE ANY constructor calls.
*/
struct CPtrInfoBase
{
CRefCount const* Ptr; // to know if the instance is valid.
sint RefCount; // RefCount of ptrinfo (!= instance)
bool IsNullPtrInfo; // For dll problems, must use a flag to mark NullPtrInfo.
};
struct CPtrInfo : public CPtrInfoBase
{
CPtrInfo(CRefCount const* p) {Ptr=p; RefCount=0; IsNullPtrInfo=false;}
};
// OWN null for ref ptr. (Optimisations!!!)
static CPtrInfoBase NullPtrInfo;
friend struct CPtrInfo;
// for special case use only.
inline const sint &getRefCount() const
{
return crefs;
}
public:
// Can't put this to private since must be used by CSmartPtr (and friend doesn't work with template).
// Provide incref()/decref() function doen't work since decref() can't do a delete this on a non virtual dtor.
// So Ptr gestion can only be used via CSmartPtr.
mutable sint crefs; // The ref counter for SmartPtr use.
mutable CPtrInfo *pinfo; // The ref ptr for RefPtr use.
/// operator= must NOT copy crefs/pinfo!!
CRefCount &operator=(const CRefCount &) {return *this;}
/// copy cons must NOT copy crefs/pinfo!!
CRefCount(const CRefCount &) {crefs = 0; pinfo=static_cast<CPtrInfo*>(&NullPtrInfo);}
};
// To use CVirtualRefPtr (or if you just want to have a RefCount with virtual destructor), derive from this class.
class CVirtualRefCount : public CRefCount
{
public:
/// Virtual destructor
virtual ~CVirtualRefCount() {}
};
// ***************************************************************************
// For debug only.
#define SMART_TRACE(_s) ((void)0)
#define REF_TRACE(_s) ((void)0)
//#define SMART_TRACE(_s) printf("%s: %d \n", _s, Ptr?Ptr->crefs:0)
//#define REF_TRACE(_s) printf("%s: %d \n", _s, pinfo!=&CRefCount::NullPtrInfo?pinfo->RefCount:0)
/**
* Standard SmartPtr class. T Must derive from CRefCount.
* Once a normal ptr is assigned to a SmartPtr, the smartptr will own this pointer, and delete it when no other smartptr
* reference the object (with a reference couting scheme). The following code works, since the object himself must herit
* from CRefCount, and so hold the refcount.
* \code
CSmartPtr<A> a0, a1;
A *p0;
a0= new A; // Ok. RefCount==1.
p0= a0; // Ok, cast operator. object still owned by a0.
a1= p0; // Ok!! RefCount==2. Object owned by a0 and a1;
// At destruction, a1 unref(), then a0 unref() and delete the object.
\endcode
*
* The ref counter cannot be put directly in the smartptr since the preceding behavior must be supported and inheritance must be supported too.
* Here, if A is a base class of B, Pa and Pb are smartptr of a and b respectively, then \c Pa=Pb; is a valid operation.
* But, doing this, you may ensure that you have a virtual dtor(), since dtor() Pa may call ~A() (or you may ensure that Pa
* won't destruct A, which it sound much more as a normal pointer :) ).
*
* Sample:
*\code
class A : public CRefCount
{
public:
A() {puts("A()");}
virtual ~A() {puts("~A()");}
};
class B : public A
{
public:
B() {puts("B()");}
~B() {puts("~B()");}
};
void testPtr()
{
CSmartPtr<A> a0,a1,a2;
CSmartPtr<B> b0;
a0= new A;
a1= a0;
a1= new A;
a2= a1;
a1=NULL;
b0= new B;
a0=b0;
printf("%d\n", (A*)NULL==a0);
printf("%d\n", b0!=a0);
printf("%d\n", (A*)NULL==a1);
printf("%d\n", a2!=a0);
}
*\endcode
*
* SmartPtr are compatible with RefPtr. A ptr may be link to a CRefPtr and a CSmartPtr. As example, when the CSmartPtr
* will destroy him, CRefPtr will be informed...
* Sample:
*\code
void foo()
{
A *p;
CSmartPtr<A> sp;
CRefPtr<A> rp;
p= new A;
sp= p; // OK. p is now owned by sp and will be deleted by sp.
rp= p; // OK. rp handle p.
sp= NULL; // Destruction. p deleted. rp automatically informed.
p= rp; // result: p==NULL.
}
\endcode
*
* \b PERFORMANCE \b WARNING! operator=() are about 10 times slower than normal pointers.
* For local use, prefer cast the smartptr to a normal Ptr.
* \sa CRefPtr
* \author Lionel Berenguier
* \author Nevrax France
* \date 2000
*/
template <class T>
class CSmartPtr
{
T* Ptr;
public:
typedef T element_type;
/// Init a NULL Ptr.
CSmartPtr() { Ptr=NULL; SMART_TRACE("ctor()"); }
/// Attach a ptr to a SmartPtr.
CSmartPtr(T* p) { Ptr=p; if(Ptr) Ptr->crefs++; SMART_TRACE("ctor(T*)"); }
/// Copy constructor.
CSmartPtr(const CSmartPtr &copy) { Ptr=copy.Ptr; if(Ptr) Ptr->crefs++; SMART_TRACE("ctor(Copy)"); }
/// Release the SmartPtr.
~CSmartPtr();
/// Cast operator.
operator T*(void) const { SMART_TRACE("castT*()"); return Ptr; }
/// Indirection operator. Doesn't check NULL.
T& operator*(void) const { SMART_TRACE("ope*()"); return *Ptr; }
/// Selection operator. Doesn't check NULL.
T* operator->(void) const { SMART_TRACE("ope->()"); return Ptr; }
/// returns if there's no object pointed by this SmartPtr.
bool isNull () const { return Ptr==NULL; }
/// Return the pointer
T *getPtr() const { return Ptr;}
/// operator=. Giving a NULL pointer is a valid operation.
CSmartPtr& operator=(T* p);
/// operator=. Giving a NULL pointer is a valid operation.
CSmartPtr& operator=(const CSmartPtr &p);
/// operator<. Compare the pointers.
bool operator<(const CSmartPtr &p) const;
sint getNbRef() { if(Ptr) return Ptr->crefs; else return 0; }
// No need to do any operator==. Leave the work to cast operator T*(void).
std::string toString() { if(Ptr) return toString(*Ptr); else return "<null>"; }
// serial using serialPtr
void serialPtr(NLMISC::IStream &f) throw(NLMISC::EStream )
{
T* obj= NULL;
if(f.isReading())
{
f.serialPtr(obj);
// assign correctly (NB: obj may be NULL)
*this= obj;
}
else
{
obj= Ptr;
f.serialPtr(obj);
}
}
// serial using serialPloyPtr
void serialPolyPtr(NLMISC::IStream &f) throw(NLMISC::EStream )
{
T* obj= NULL;
if(f.isReading())
{
f.serialPolyPtr(obj);
// assign correctly (NB: obj may be NULL)
*this= obj;
}
else
{
obj= Ptr;
f.serialPolyPtr(obj);
}
}
};
// ***************************************************************************
/**
* CRefPtr: an handle on a ptr. T Must derive from CRefCount.
* If you use CRefPtr, you can kill the object simply by calling delete (T*)RefPtr, or the kill() method. All other CRefPtr which
* point to it can know if it has been deleted. (but you must be sure that this ptr is not handle by a SmartPtr, of course...)
*
* SmartPtr are compatible with RefPtr. A ptr may be link to a CRefPtr and a CSmartPtr. As example, when the CSmartPtr
* will destroy him, CRefPtr will be informed...
* Sample:
*\code
void foo()
{
A *p;
CSmartPtr<A> sp;
CRefPtr<A> rp;
p= new A;
sp= p; // OK. p is now owned by sp and will be deleted by sp.
rp= p; // OK. rp handle p.
sp= NULL; // Destruction. p deleted. rp automatically informed.
if(rp==NULL)
thisIsGood(); // rp==NULL.
}
\endcode
*
* \b PERFORMANCE \b WARNING! operator=() are about 10 times slower than normal pointers. So use them wisely.
* For local use, prefer cast the refptr to a normal Ptr.
* Also, an object used with a CRefPtr will allocate a small PtrInfo (one only per object, not per ptr).
* \sa CSmartPtr
*/
template <class T>
class CRefPtr
{
private:
CRefCount::CPtrInfo *pinfo; // A ptr to the handle of the object.
mutable T *Ptr; // A cache for pinfo->Ptr. Useful to speed up ope->() and ope*()
void unRef() const; // Just release the handle pinfo, but do not update pinfo/Ptr, if deleted.
public:
/// Init a NULL Ptr.
CRefPtr();
/// Attach a ptr to a RefPtr.
CRefPtr(T *v);
/// Copy constructor.
CRefPtr(const CRefPtr &copy);
/// Release the RefPtr.
~CRefPtr(void);
/// Cast operator. Check if the object has been deleted somewhere, and return NULL if this is the case.
operator T*() const;
/// Indirection operator. Doesn't test if ptr has been deleted somewhere, and doesn't check NULL.
T& operator*(void) const;
/// Selection operator. Doesn't test if ptr has been deleted somewhere, and doesn't check NULL.
T* operator->(void) const;
/// operator=. Giving a NULL pointer is a valid operation.
CRefPtr& operator=(T *v);
/// operator=. Giving a NULL pointer is a valid operation.
CRefPtr& operator=(const CRefPtr &copy);
/**
* kill/delete the object pointed by the pointer, and inform the other RefPtr of this.
* "rp.kill()" and "delete (T*)rp" do the same thing, except that rp NULLity is updated with kill().
* RefPtr which point to the same object could know if the object is valid, by just testing it (
* by an implicit call to the cast operator to T*). But any calls to operator->() or operator*() will have
* unpredictible effects (may crash... :) ).
*/
void kill();
// serial using serialPloyPtr
void serialPolyPtr(NLMISC::IStream &f) throw(NLMISC::EStream )
{
T* obj= NULL;
if(f.isReading())
{
f.serialPolyPtr(obj);
// assign correctly (NB: obj may be NULL)
*this= obj;
}
else
{
obj= Ptr;
f.serialPolyPtr(obj);
}
}
};
#if defined(NL_COMP_VC8) || defined(NL_COMP_VC9)
// This operator only purpose is to compare with NULL value
template <class T>
bool operator == (const CRefPtr<T> &refPtr, int null)
{
nlassert(null == 0);
return (T*)refPtr == (T*)null;
}
#endif
template <class T>
bool operator == (const CRefPtr<T> &refPtr, T *ptr)
{
return (T*)refPtr == ptr;
}
template <class T>
bool operator == (const CRefPtr<T> &leftRef, const CRefPtr<T> &rightRef)
{
return (T*)leftRef == (T*) rightRef;
}
template <class T>
class CVirtualRefPtr
{
private:
CRefCount::CPtrInfo *pinfo; // A ptr to the handle of the object.
mutable T *Ptr; // A cache for pinfo->Ptr. Useful to speed up ope->() and ope*()
void unRef() const; // Just release the handle pinfo, but do not update pinfo/Ptr, if deleted.
public:
/// Init a NULL Ptr.
CVirtualRefPtr();
/// Attach a ptr to a VirtualRefPtr.
CVirtualRefPtr(T *v);
/// Copy constructor.
CVirtualRefPtr(const CVirtualRefPtr &copy);
/// Release the VirtualRefPtr.
~CVirtualRefPtr(void);
/// Cast operator. Check if the object has been deleted somewhere, and return NULL if this is the case.
operator T*() const;
/// Indirection operator. Doesn't test if ptr has been deleted somewhere, and doesn't check NULL.
T& operator*(void) const;
/// Selection operator. Doesn't test if ptr has been deleted somewhere, and doesn't check NULL.
T* operator->(void) const;
/// operator=. Giving a NULL pointer is a valid operation.
CVirtualRefPtr& operator=(T *v);
/// operator=. Giving a NULL pointer is a valid operation.
CVirtualRefPtr& operator=(const CVirtualRefPtr &copy);
/**
* kill/delete the object pointed by the pointer, and inform the other VirtualRefPtr of this.
* "rp.kill()" and "delete (T*)rp" do the same thing, except that rp NULLity is updated with kill().
* VirtualRefPtr which point to the same object could know if the object is valid, by just testing it (
* by an implicit call to the cast operator to T*). But any calls to operator->() or operator*() will have
* unpredictible effects (may crash... :) ).
*/
void kill();
// No need to do any operator==. Leave the work to cast operator T*(void).
};
/**
* A little quick coded class made to find invalid object pointer existence while a destructor call on an objet.
* Futur job is to do not have CstCDbgPtr .. (error due to a lack of time).
*
* Feature:
* If you try to delete an object and if there still some pointer referencing it, it causes an assertion.
* This Debug feature depends on NL_DEBUG_PTR definition (change it as your convenience).
* These are only debug classes and are not design to use information for your code comportment
* as they are made to desappear in final version (NL_DEBUG_PTR undefined),
* so don't use method calls outside NL_DEBUG_PTR scope.
*
* How to:
* Derivate your objet from CDbgRefCount<T> where T is the type of pointer you allow to use on this object (you can use many).
* then use CDbgPtr<T> to point an object of type T (which must derivates from CDbgRefCount<T>), its the pointer.
*
* Warning:
* Be carefull to derivates first from CDbgRefCount<T> as derivation order implicates constructor/destructor order calls.
* Sometimes u may have to write some explicit casts, don't worry, it would be only common courtesy ;)
*
* Futur work (only if you need it):
* enhanced features (like __FILE__ __LINE__ information).
*
* Extension by Jerome Vuarand
* I've added additional information to trace back invalid pointers. A linked list in the ref counter can be used to access to
* invalid pointers on referenced object deletion, and an additionnal data field in each pointer let pointer owner to specify
* additionnal information. The linked list insertion occurs on head. The linked is doubly-linked to avoid parsing it on deletion.
* When a reference is still present on referenced object deletion, an assert is issued and access to pointers is given. Each
* CDbgPtr owner can attach a data pointer to the CDbgPtr. A good way to use the feature is to derive the owner from IDbgPtrData,
* pass this as the data to the CDbgPtr, and to let RTTI find the owner during assert manual handling.
*
* \author Stephane Le Dorze
* \author Jerome Vuarand
* \author Nevrax France
* \date 2003-2005
*/
#ifdef NL_DEBUG
#define NL_DEBUG_PTR
#endif
template <class T> class CDbgPtr;
template <class T> class CstCDbgPtr;
class IDbgPtrData
{
public:
virtual ~IDbgPtrData() { }
};
template <class T>
class CDbgRefCount
{
#ifdef NL_DEBUG_PTR
public:
CDbgRefCount(const CDbgRefCount& other)
: _DbgCRefs(0)
, _DbgCCstRefs(0)
, _MaxRef(other._MaxRef)
, _CheckOn(other._CheckOn)
, _FirstReference(NULL)
, _FirstCstReference(NULL)
{
}
CDbgRefCount(sint32 maxRef = (1<<30))
: _DbgCRefs(0)
, _DbgCCstRefs(0)
, _MaxRef(maxRef)
, _FirstReference(NULL)
, _FirstCstReference(NULL)
{
}
virtual ~CDbgRefCount()
{
if (_DbgCRefs!=0 || _DbgCCstRefs!=0)
{
const CDbgPtr<T>* ref0, *ref1, *ref2, *ref3, *ref4; ref0=ref1=ref2=ref3=ref4=(CDbgPtr<T>*)NULL;
IDbgPtrData* dat0, *dat1, *dat2, *dat3, *dat4; dat0=dat1=dat2=dat3=dat4=(IDbgPtrData*)NULL;
if (_DbgCRefs>0) { ref0 = _FirstReference; dat0 = ref0->getData(); }
if (_DbgCRefs>1) { ref1 = ref0->getNextReference(); dat1 = ref1->getData(); }
if (_DbgCRefs>2) { ref2 = ref1->getNextReference(); dat2 = ref2->getData(); }
if (_DbgCRefs>3) { ref3 = ref2->getNextReference(); dat3 = ref3->getData(); }
if (_DbgCRefs>4) { ref4 = ref3->getNextReference(); dat4 = ref4->getData(); }
const CstCDbgPtr<T>* cref0, *cref1, *cref2, *cref3, *cref4; cref0=cref1=cref2=cref3=cref4=(CstCDbgPtr<T>*)NULL;
IDbgPtrData* cdat0, *cdat1, *cdat2, *cdat3, *cdat4; cdat0=dat1=cdat2=cdat3=cdat4=(IDbgPtrData*)NULL;
if (_DbgCCstRefs>0) { cref0 = _FirstCstReference; cdat0 = cref0->getData(); }
if (_DbgCCstRefs>1) { cref1 = cref0->getNextReference(); cdat1 = cref1->getData(); }
if (_DbgCCstRefs>2) { cref2 = cref1->getNextReference(); cdat2 = cref2->getData(); }
if (_DbgCCstRefs>3) { cref3 = cref2->getNextReference(); cdat3 = cref3->getData(); }
if (_DbgCCstRefs>4) { cref4 = cref3->getNextReference(); cdat4 = cref4->getData(); }
nlassert(_DbgCRefs==0);
nlassert(_DbgCCstRefs==0);
}
}
sint getDbgRef(const CDbgPtr<T>& ptr) const
{
return _DbgCRefs + _DbgCCstRefs;
}
sint getDbgRef(const CstCDbgPtr<T>& ptr) const
{
return _DbgCRefs + _DbgCCstRefs;
}
void incRef(const CDbgPtr<T>& ptr) const
{
if (_CheckOn)
nlassert(_DbgCRefs<_MaxRef);
++_DbgCRefs;
// Linked list management
nlassert(_FirstReference!=&ptr);
ptr.setNextReference(_FirstReference);
ptr.setPrevReference((CDbgPtr<T>*)NULL);
if (_FirstReference)
_FirstReference->setPrevReference(&ptr);
_FirstReference = &ptr;
}
void decRef(const CDbgPtr<T>& ptr) const
{
nlassert(_DbgCRefs>0);
--_DbgCRefs;
// Linked list management
if (ptr.getNextReference())
ptr.getNextReference()->setPrevReference(ptr.getPrevReference());
if (ptr.getPrevReference())
ptr.getPrevReference()->setNextReference(ptr.getNextReference());
if (_FirstReference==&ptr)
_FirstReference = ptr.getNextReference();
}
void incRef(const CstCDbgPtr<T>& ptr) const
{
if (_CheckOn)
nlassert(_DbgCCstRefs<_MaxRef);
++_DbgCCstRefs;
}
void decRef(const CstCDbgPtr<T>& ptr) const
{
nlassert(_DbgCCstRefs>0);
--_DbgCCstRefs;
}
void setCheckMax(const bool checkOnOff) const
{
_CheckOn = checkOnOff;
}
private:
mutable sint _DbgCRefs;
mutable sint _DbgCCstRefs;
sint32 _MaxRef;
mutable bool _CheckOn;
mutable const CDbgPtr<T>* _FirstReference;
mutable const CstCDbgPtr<T>* _FirstCstReference;
#endif
};
template <class T>
class CDbgPtr
{
T* Ptr;
#ifdef NL_DEBUG_PTR
/// \name Linked list management
//@{
private: // Data
IDbgPtrData* Data;
mutable const CDbgPtr<T>* NextReference;
mutable const CDbgPtr<T>* PrevReference;
public: // Methods
void setData(IDbgPtrData* data) { Data = data; }
IDbgPtrData* getData() const { return Data; }
void setNextReference(const CDbgPtr<T>* reference) const { NextReference = reference; }
const CDbgPtr<T>* getNextReference() const { return NextReference; }
void setPrevReference(const CDbgPtr<T>* reference) const { PrevReference = reference; }
const CDbgPtr<T>* getPrevReference() const { return PrevReference; }
//@}
#endif
public:
CDbgPtr()
: Ptr(NULL)
#ifdef NL_DEBUG_PTR
, Data(NULL)
, NextReference(NULL)
, PrevReference(NULL)
#endif
{
}
template <class W>
CDbgPtr(const W* p)
#ifdef NL_DEBUG_PTR
: Data(NULL)
, NextReference(NULL)
, PrevReference(NULL)
#endif
{
Ptr = const_cast<T*>(NLMISC::type_cast<const T*>(p));
#ifdef NL_DEBUG_PTR
if (Ptr)
{
CDbgRefCount<T>* ref = static_cast<CDbgRefCount<T>*>(Ptr);
ref->incRef(*this);
}
#endif
}
CDbgPtr(const CDbgPtr& copy)
#ifdef NL_DEBUG_PTR
: Data(NULL)
, NextReference(NULL)
, PrevReference(NULL)
#endif
{
Ptr = copy.Ptr;
#ifdef NL_DEBUG_PTR
if (Ptr)
{
CDbgRefCount<T>* ref = static_cast<CDbgRefCount<T>*>(Ptr);
ref->incRef(*this);
}
#endif
}
~CDbgPtr();
bool isNULL() const
{
return Ptr==NULL;
}
T* ptr() const
{
return Ptr;
}
operator T*(void) const
{
return Ptr;
}
template <class W>
operator W*(void) const
{
return NLMISC::type_cast<W*>(Ptr);
}
T& operator*(void) const { return *Ptr; }
T* operator->(void) const { return Ptr; }
template <class W>
CDbgPtr<T>& operator=(const W* p)
{
#ifdef NL_DEBUG_PTR
CDbgRefCount<T>* oldRef = (CDbgRefCount<T>*)NULL, *newRef = (CDbgRefCount<T>*)NULL;
if (Ptr)
oldRef = static_cast<CDbgRefCount<T>*>(Ptr);
if (p)
newRef = static_cast<CDbgRefCount<T>*>(const_cast<T*>(NLMISC::type_cast<const T*>(p)));
if (oldRef!=newRef)
{
if (oldRef) oldRef->decRef(*this);
Ptr = const_cast<T*>(NLMISC::type_cast<const T*>(p));
if (newRef) newRef->incRef(*this);
}
#else
Ptr = const_cast<T*>(NLMISC::type_cast<const T*>(p));
#endif
return *this;
}
/*
CDbgPtr<T>& operator=(const int value)
{
#ifdef NL_DEBUG
nlassert(value==NULL);
#endif
#ifdef NL_DEBUG_PTR
if (Ptr)
{
CDbgRefCount<T>* ref=static_cast<CDbgRefCount<T>*>(Ptr);
ref->decRef(*this);
}
#endif
Ptr = NULL;
return *this;
}
*/
CDbgPtr<T>& operator =(const CDbgPtr& p);
bool operator <(const CDbgPtr& p) const;
template <class W>
bool operator ==(const W* p) const
{
return Ptr==NLMISC::type_cast<const T*>(p);
}
template <class W>
bool operator !=(const W* p) const
{
return Ptr!=NLMISC::type_cast<const T*>(p);
}
bool operator ==(const CDbgPtr &p) const
{
return Ptr==p.Ptr;
}
bool operator !=(const CDbgPtr &p) const
{
return Ptr!=p.Ptr;
}
bool operator ==(int p) const
{
nlassert(p == 0);
return Ptr==0;
}
bool operator !=(int p) const
{
nlassert(p == 0);
return Ptr!=0;
}
};
template<class T>
inline CDbgPtr<T>::~CDbgPtr(void)
{
#ifdef NL_DEBUG_PTR
if (Ptr)
{
CDbgRefCount<T>* ref = static_cast<CDbgRefCount<T>*>(Ptr);
ref->decRef(*this);
Ptr = NULL;
}
#else
Ptr=NULL;
#endif
}
template<class T>
CDbgPtr<T>& CDbgPtr<T>::operator =(const CDbgPtr& p)
{
return CDbgPtr<T>::operator =(p.Ptr);
}
template<class T>
bool CDbgPtr<T>::operator <(const CDbgPtr& p) const
{
return Ptr<p.Ptr;
}
template <class T>
class CstCDbgPtr
{
const T* Ptr;
#ifdef NL_DEBUG_PTR
/// \name Linked list management
//@{
private: // Data
IDbgPtrData* Data;
mutable const CstCDbgPtr<T>* NextReference;
mutable const CstCDbgPtr<T>* PrevReference;
public: // Methods
void setData(IDbgPtrData* data) { Data = data; }
IDbgPtrData* getData() const { return Data; }
void setNextReference(const CstCDbgPtr<T>* reference) const { NextReference = reference; }
const CstCDbgPtr<T>* getNextReference() const { return NextReference; }
void setPrevReference(const CstCDbgPtr<T>* reference) const { PrevReference = reference; }
const CstCDbgPtr<T>* getPrevReference() const { return PrevReference; }
//@}
#endif
public:
CstCDbgPtr()
: Ptr(NULL)
#ifdef NL_DEBUG_PTR
, Data(NULL)
, NextReference(NULL)
, PrevReference(NULL)
#endif
{
}
CstCDbgPtr(const T* p)
#ifdef NL_DEBUG_PTR
: Data(NULL)
, NextReference(NULL)
, PrevReference(NULL)
#endif
{
Ptr = p;
#ifdef NL_DEBUG_PTR
if (Ptr)
{
CDbgRefCount<T>* ref = static_cast<CDbgRefCount<T>*>(const_cast<T*>(Ptr));
ref->incRef(*this);
}
#endif
}
CstCDbgPtr(const CstCDbgPtr& copy)
#ifdef NL_DEBUG_PTR
: Data(NULL)
, NextReference(NULL)
, PrevReference(NULL)
#endif
{
Ptr = copy.Ptr;
#ifdef NL_DEBUG_PTR
if (Ptr)
{
CDbgRefCount<T>* ref = static_cast<CDbgRefCount<T>*>(const_cast<T*>(Ptr));
ref->incRef(*this);
}
#endif
}
~CstCDbgPtr();
const T* ptr() const
{
return Ptr;
}
bool isNULL() const
{
return Ptr==NULL;
}
operator const T*(void) const { return Ptr; }
const T& operator*(void) const { return *Ptr; }
const T* operator->(void) const { return Ptr; }
CstCDbgPtr& operator =(const T* p);
CstCDbgPtr& operator =(const CstCDbgPtr& p);
bool operator <(const CstCDbgPtr& p) const;
};
template<class T>
CstCDbgPtr<T>::~CstCDbgPtr(void)
{
#ifdef NL_DEBUG_PTR
if (Ptr)
{
CDbgRefCount<T>* ref = static_cast<CDbgRefCount<T>*>(const_cast<T*>(Ptr));
ref->decRef(*this);
}
#endif
Ptr = NULL;
}
template<class T>
CstCDbgPtr<T>& CstCDbgPtr<T>::operator =(const T* p)
{
#ifdef NL_DEBUG_PTR
if (p)
{
CDbgRefCount<T>* ref = static_cast<CDbgRefCount<T>*>(const_cast<T*>(p));
ref->incRef(*this);
}
if (Ptr)
{
CDbgRefCount<T>* ref = static_cast<CDbgRefCount<T>*>(const_cast<T*>(Ptr));
ref->decRef(*this);
}
#endif
Ptr = p;
return *this;
}
template<class T>
CstCDbgPtr<T>& CstCDbgPtr<T>::operator =(const CstCDbgPtr& p)
{
return CstCDbgPtr<T>::operator =(p.Ptr);
}
template<class T>
bool CstCDbgPtr<T>::operator <(const CstCDbgPtr& p) const
{
return Ptr<p.Ptr;
}
}
// ***************************************************************************
// ***************************************************************************
// Implementation.
// ***************************************************************************
// ***************************************************************************
#include "smart_ptr_inline.h"
#undef SMART_TRACE
#undef REF_TRACE
#endif // NL_SMART_PTR_H
/* End of smart_ptr.h */