khanat-opennel-code/code/ryzom/server/src/ai_service/states.cpp
acemtp@users.sourceforge.net d5c601ffa5 initial version
2010-05-06 02:08:41 +02:00

315 lines
8.8 KiB
C++

// Ryzom - MMORPG Framework <http://dev.ryzom.com/projects/ryzom/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "stdpch.h"
#include "states.h"
#include "event_reaction_container.h"
#include "state_profil.h"
#include "world_container.h"
#include "ai.h"
#include "ai_instance.h"
#include "state_instance.h"
extern NLMISC::CVariable<bool> LogAcceptablePos;
using namespace AITYPES;
std::string CAIState::getIndexString () const
{
return getOwner()->getIndexString()+NLMISC::toString(":%u", getChildIndex());
}
void CAIState::updateDependencies (const CAIAliasDescriptionNode &aliasTree, CAliasTreeOwner *aliasTreeOwner)
{
switch(aliasTree.getType())
{
case AITypeGrp:
{
CGroup *const group=NLMISC::safe_cast<CGroup*>(aliasTreeOwner);
nlassert(group);
group->getPersistentStateInstance()->setStartState(getOwner()->states().getChildByAlias(getAlias()));
}
break;
case AITypeEvent:
{
CAIEventReaction*const eventPtr=NLMISC::safe_cast<CAIEventReaction*>(getOwner()->eventReactions().getAliasChildByAlias(aliasTree.getAlias()));
nlassert(eventPtr);
if (!eventPtr)
break;
eventPtr->setState (getAlias());
eventPtr->setType (CAIEventReaction::FixedState);
}
break;
}
}
IAliasCont* CAIState::getAliasCont(TAIType type)
{
switch(type)
{
case AITypeNpcStateProfile:
return &_Profiles;
case AITypeNpcStateChat:
return &_Chats;
default:
return NULL;
}
}
CAliasTreeOwner* CAIState::createChild(IAliasCont *cont, CAIAliasDescriptionNode *aliasTree)
{
CAliasTreeOwner* child = NULL;
switch(aliasTree->getType())
{
case AITypeNpcStateProfile:
child = new CAIStateProfile(this, aliasTree);
break;
case AITypeNpcStateChat:
child = new CAIStateChat(this, aliasTree);
break;
}
if (child)
cont->addAliasChild(child);
return child;
}
CAIState *CStateInstance::getCAIState ()
{
return _state;
}
bool CShape::setPath(TVerticalPos verticalPos, const std::vector <CAIVector> &points)
{
bool ret = true;
_VerticalPos = verticalPos;
_Geometry.clear ();
_Geometry.reserve(points.size());
for (uint32 ind=0;ind<points.size();ind++)
{
RYAI_MAP_CRUNCH::CWorldPosition newpos;
CWorldContainer::calcNearestWPosFromPosAnRadius(_VerticalPos, newpos, points[ind], 0, 1, CWorldContainer::CPosValidatorDefault());
if ( !newpos.isValid()
&& !_AcceptInvalidPos )
{
CWorldContainer::calcNearestWPosFromPosAnRadius(_VerticalPos, newpos, points[ind], 6, 100, CWorldContainer::CPosValidatorDefault());
//#ifdef NL_DEBUG
if (newpos.isValid())
{
if (LogAcceptablePos)
nlinfo("StatePositionnal 'ss'(uu): Path pos Error at position %s, an acceptable position could be %s (in 'ss')",
/*getAliasFullName().c_str(), getAlias(),*/
points[ind].toString().c_str(), newpos.toString().c_str()/*, getAliasFullName().c_str()*/);
}
else
{
nlwarning("StatePositionel 'ss'(uu): Path pos Error at position %s, no acceptable position found around (in 'ss')",
/*getAliasFullName().c_str(), getAlias(),*/
points[ind].toString().c_str()/*, getAliasFullName().c_str()*/);
ret = false;
}
//#endif
}
_Geometry.push_back(newpos);
}
_GeometryType=PATH;
return ret;
}
bool CShape::contains (const CAIVector &pos) const
{
// Point or line can't contains !
if (_Geometry.size() < 3)
return false;
// Check with the bounding rectangle of the zone
if ( (pos.x() < _VMin.x())
|| (pos.y() < _VMin.y())
|| (pos.x() > _VMax.x())
|| (pos.y() > _VMax.y()) )
return false;
uint32 nNbIntersection = 0;
for (uint32 i = 0; i<_Geometry.size(); ++i)
{
const CAIVector p1 = _Geometry[i];
const CAIVector p2 = _Geometry[(i+1)%_Geometry.size()];
if ( (p1.y() <= pos.y())
&& (p2.y() <= pos.y()) )
continue;
if ( (p1.y() > pos.y())
&& (p2.y() > pos.y()) )
continue;
const double deltaX=p2.x()-p1.x();
const double deltaY=p2.y()-p1.y();
const double deltaYPos=pos.y()-p1.y();
const double xinter = (double)p1.x() + deltaX*(deltaYPos/deltaY);
if (xinter > pos.x())
++nNbIntersection;
}
return ((nNbIntersection&1)==1); // odd intersections so the vertex is inside
}
bool CShape::setPatat(TVerticalPos verticalPos, const std::vector <CAIVector> &points)
{
bool ret = true;
_VerticalPos = verticalPos;
// _Geometry=points;
_GeometryType=PATAT;
_Geometry.clear();
_Geometry.reserve(points.size());
// create a list of valid position inside the patat
CAIVector vMin, vMax;
// Point or line can't contains !
if (points.size() < 3)
return true;
// Get the bounding rectangle of the zone
vMax = vMin = points[0];
for (uint i = 0; i < points.size(); ++i)
{
if (vMin.x() > points[i].x())
vMin.setX(points[i].x());
if (vMin.y() > points[i].y())
vMin.setY(points[i].y());
if (vMax.x() < points[i].x())
vMax.setX(points[i].x());
if (vMax.y() < points[i].y())
vMax.setY(points[i].y());
}
_VMin = vMin;
_VMax = vMax;
// fill the geometry vector with invalid word pos
for (uint i=0; i<points.size(); ++i)
{
_Geometry.push_back(TPosition(sint(points[i].x().asDouble()), sint(points[i].y().asDouble())));
}
// find a valid position for every geometric
RYAI_MAP_CRUNCH::CWorldPosition worldPos;
if (!CWorldContainer::calcNearestWPosFromPosAnRadius (_VerticalPos, worldPos, points[0], float((vMax-vMin).quickNorm()), 1000, CWorldContainer::CPosValidatorDefault()))
{
// nlwarning("Can't find valid pos for state position '%s'(%u)", getAliasFullName().c_str(), getAlias());
if (!_AcceptInvalidPos)
{
nlwarning("Can't find valid pos for state at position %s", points[0].toString().c_str());
ret = false;
}
}
else
{
buildRandomPos(worldPos, float((vMax-vMin).quickNorm()));
}
// build the valid pos for each patat point
_Geometry.clear();
_Geometry.reserve(points.size());
for (uint32 ind=0;ind<points.size();ind++)
{
RYAI_MAP_CRUNCH::CWorldPosition newpos;
CWorldContainer::calcNearestWPosFromPosAnRadius(_VerticalPos, newpos, points[ind], 0, 1, CWorldContainer::CPosValidatorDefault());
if ( !newpos.isValid()
&& !_AcceptInvalidPos)
{
CWorldContainer::calcNearestWPosFromPosAnRadius(_VerticalPos, newpos, points[ind], 6, 100, CWorldContainer::CPosValidatorDefault());
//#ifdef NL_DEBUG
if (newpos.isValid())
{
if (LogAcceptablePos)
nlinfo("Path pos Error at position %s, an acceptable position could be %s",
points[ind].toString().c_str(),
newpos.toString().c_str());
// nlinfo("StatePrositionnal '%s'(%u): Path pos Error at position %s, an acceptable position could be %s (in '%s')",
// getAliasFullName().c_str(),
// getAlias(),
// points[ind].toString().c_str(),
// newpos.toString().c_str(),
// getAliasFullName().c_str());
}
else
{
nlwarning("Path pos Error at position %s, no acceptable position found around",
points[ind].toString().c_str());
ret = false;
}
//#endif
}
_Geometry.push_back(newpos);
}
return ret;
}
bool CShape::calcRandomPos(CAIPos &pos) const
{
CAIVector v(
(double(_VMin.x()) + CAIS::rand32(_VMax.x() - _VMin.x()))/CAICoord::UNITS_PER_METER,
(double(_VMin.y()) + CAIS::rand32(_VMax.y() - _VMin.y()))/CAICoord::UNITS_PER_METER);
if ((v.x() < _VMin.x()) || (v.y() < _VMin.y()) || (v.x() > _VMax.x()) || (v.y() > _VMax.y()))
return false;
uint32 nNbIntersection = 0;
for (uint k = 0; k < _Geometry.size(); ++k)
{
const CAIVector &p1 = _Geometry[k];
const CAIVector &p2 = _Geometry[(k+1)%_Geometry.size()];
if (((p1.y()-v.y()) < 0.0)&&((p2.y()-v.y()) < 0.0))
continue;
if (((p1.y()-v.y()) > 0.0)&&((p2.y()-v.y()) > 0.0))
continue;
if ((p2.y()-p1.y()) == 0)
continue;
const float delta = (v.y()-p1.y()).asInt()/float(p2.y()-p1.y());
const float xinter = (float)(p1.x().asInt() + (p2.x()-p1.x()).asInt() * delta);
if (xinter > v.x())
++nNbIntersection;
}
if ((nNbIntersection&1) == 1) // odd intersections so the vertex is inside
{
pos = CAIPos(v, 0, 0);
return true;
};
return false;
}