shader_type spatial; // This is a very simple shader for a low-poly coloured visual, without textures uniform sampler2D u_terrain_heightmap; uniform sampler2D u_terrain_normalmap; // I had to remove `hint_albedo` from colormap because it makes sRGB conversion kick in, // which snowballs to black when doing GPU painting on that texture... uniform sampler2D u_terrain_colormap;// : hint_albedo; uniform mat4 u_terrain_inverse_transform; uniform mat3 u_terrain_normal_basis; varying flat vec4 v_tint; vec3 unpack_normal(vec4 rgba) { vec3 n = rgba.xzy * 2.0 - vec3(1.0); // Had to negate Z because it comes from Y in the normal map, // and OpenGL-style normal maps are Y-up. n.z *= -1.0; return n; } void vertex() { vec2 cell_coords = (u_terrain_inverse_transform * WORLD_MATRIX * vec4(VERTEX, 1)).xz; // Must add a half-offset so that we sample the center of pixels, // otherwise bilinear filtering of the textures will give us mixed results (#183) cell_coords += vec2(0.5); // Normalized UV UV = cell_coords / vec2(textureSize(u_terrain_heightmap, 0)); // Height displacement float h = texture(u_terrain_heightmap, UV).r; VERTEX.y = h; // Putting this in vertex saves 2 fetches from the fragment shader, // which is good for performance at a negligible quality cost, // provided that geometry is a regular grid that decimates with LOD. // (downside is LOD will also decimate tint and splat, but it's not bad overall) v_tint = texture(u_terrain_colormap, UV); // Need to use u_terrain_normal_basis to handle scaling. NORMAL = u_terrain_normal_basis * unpack_normal(texture(u_terrain_normalmap, UV)); } void fragment() { if (v_tint.a < 0.5) { // TODO Add option to use vertex discarding instead, using NaNs discard; } vec3 terrain_normal_world = u_terrain_normal_basis * unpack_normal(texture(u_terrain_normalmap, UV)); terrain_normal_world = normalize(terrain_normal_world); ALBEDO = v_tint.rgb; ROUGHNESS = 1.0; NORMAL = normalize(cross(dFdx(VERTEX), dFdy(VERTEX))); }