shader_type spatial; // WIP // This shader uses a texture array with multiple splatmaps, allowing up to 16 textures. // Only the 4 textures having highest blending weight are sampled. uniform sampler2D u_terrain_heightmap; uniform sampler2D u_terrain_normalmap; // I had to remove `hint_albedo` from colormap because it makes sRGB conversion kick in, // which snowballs to black when doing GPU painting on that texture... uniform sampler2D u_terrain_colormap; uniform sampler2D u_terrain_splatmap; uniform sampler2D u_terrain_splatmap_1; uniform sampler2D u_terrain_splatmap_2; uniform sampler2D u_terrain_splatmap_3; uniform sampler2D u_terrain_globalmap : hint_albedo; uniform mat4 u_terrain_inverse_transform; uniform mat3 u_terrain_normal_basis; uniform sampler2DArray u_ground_albedo_bump_array : hint_albedo; uniform sampler2DArray u_ground_normal_roughness_array; uniform float u_ground_uv_scale = 20.0; uniform bool u_depth_blending = true; uniform float u_globalmap_blend_start; uniform float u_globalmap_blend_distance; uniform bool u_tile_reduction = false; varying float v_hole; varying vec3 v_tint; varying vec2 v_terrain_uv; varying vec3 v_ground_uv; varying float v_distance_to_camera; // TODO Can't put this in a constant: https://github.com/godotengine/godot/issues/44145 //const int TEXTURE_COUNT = 16; vec3 unpack_normal(vec4 rgba) { vec3 n = rgba.xzy * 2.0 - vec3(1.0); // Had to negate Z because it comes from Y in the normal map, // and OpenGL-style normal maps are Y-up. n.z *= -1.0; return n; } vec4 pack_normal(vec3 n, float a) { n.z *= -1.0; return vec4((n.xzy + vec3(1.0)) * 0.5, a); } // Blends weights according to the bump of detail textures, // so for example it allows to have sand fill the gaps between pebbles vec4 get_depth_blended_weights(vec4 splat, vec4 bumps) { float dh = 0.2; vec4 h = bumps + splat; // TODO Keep improving multilayer blending, there are still some edge cases... // Mitigation: nullify layers with near-zero splat h *= smoothstep(0, 0.05, splat); vec4 d = h + dh; d.r -= max(h.g, max(h.b, h.a)); d.g -= max(h.r, max(h.b, h.a)); d.b -= max(h.g, max(h.r, h.a)); d.a -= max(h.g, max(h.b, h.r)); return clamp(d, 0, 1); } vec3 get_triplanar_blend(vec3 world_normal) { vec3 blending = abs(world_normal); blending = normalize(max(blending, vec3(0.00001))); // Force weights to sum to 1.0 float b = blending.x + blending.y + blending.z; return blending / vec3(b, b, b); } vec4 texture_triplanar(sampler2D tex, vec3 world_pos, vec3 blend) { vec4 xaxis = texture(tex, world_pos.yz); vec4 yaxis = texture(tex, world_pos.xz); vec4 zaxis = texture(tex, world_pos.xy); // blend the results of the 3 planar projections. return xaxis * blend.x + yaxis * blend.y + zaxis * blend.z; } void get_splat_weights(vec2 uv, out vec4 out_high_indices, out vec4 out_high_weights) { vec4 ew0 = texture(u_terrain_splatmap, uv); vec4 ew1 = texture(u_terrain_splatmap_1, uv); vec4 ew2 = texture(u_terrain_splatmap_2, uv); vec4 ew3 = texture(u_terrain_splatmap_3, uv); float weights[16] = { ew0.r, ew0.g, ew0.b, ew0.a, ew1.r, ew1.g, ew1.b, ew1.a, ew2.r, ew2.g, ew2.b, ew2.a, ew3.r, ew3.g, ew3.b, ew3.a }; // float weights_sum = 0.0; // for (int i = 0; i < 16; ++i) { // weights_sum += weights[i]; // } // for (int i = 0; i < 16; ++i) { // weights_sum /= weights_sum; // } // weights_sum=1.1; // Now we have to pick the 4 highest weights and use them to blend textures. // Using arrays because Godot's shader version doesn't support dynamic indexing of vectors // TODO We should not need to initialize, but apparently we don't always find 4 weights int high_indices_array[4] = {0, 0, 0, 0}; float high_weights_array[4] = {0.0, 0.0, 0.0, 0.0}; int count = 0; // We know weights are supposed to be normalized. // That means the highest value of the pivot above which we can find 4 results // is 1.0 / 4.0. However that would mean exactly 4 textures have exactly that weight, // which is very unlikely. If we consider 1.0 / 5.0, we are a bit more likely to find // 4 results, and finding 5 results remains almost impossible. float pivot = /*weights_sum*/1.0 / 5.0; for (int i = 0; i < 16; ++i) { if (weights[i] > pivot) { high_weights_array[count] = weights[i]; high_indices_array[count] = i; weights[i] = 0.0; ++count; } } while (count < 4 && pivot > 0.0) { float max_weight = 0.0; int max_index = 0; for (int i = 0; i < 16; ++i) { if (/*weights[i] <= pivot && */weights[i] > max_weight) { max_weight = weights[i]; max_index = i; weights[i] = 0.0; } } high_indices_array[count] = max_index; high_weights_array[count] = max_weight; ++count; pivot = max_weight; } out_high_weights = vec4( high_weights_array[0], high_weights_array[1], high_weights_array[2], high_weights_array[3]); out_high_indices = vec4( float(high_indices_array[0]), float(high_indices_array[1]), float(high_indices_array[2]), float(high_indices_array[3])); out_high_weights /= out_high_weights.r + out_high_weights.g + out_high_weights.b + out_high_weights.a; } vec4 depth_blend2(vec4 a_value, float a_bump, vec4 b_value, float b_bump, float t) { // https://www.gamasutra.com // /blogs/AndreyMishkinis/20130716/196339/Advanced_Terrain_Texture_Splatting.php float d = 0.1; float ma = max(a_bump + (1.0 - t), b_bump + t) - d; float ba = max(a_bump + (1.0 - t) - ma, 0.0); float bb = max(b_bump + t - ma, 0.0); return (a_value * ba + b_value * bb) / (ba + bb); } vec2 rotate(vec2 v, float cosa, float sina) { return vec2(cosa * v.x - sina * v.y, sina * v.x + cosa * v.y); } vec4 texture_array_antitile(sampler2DArray albedo_tex, sampler2DArray normal_tex, vec3 uv, out vec4 out_normal) { float frequency = 2.0; float scale = 1.3; float sharpness = 0.7; // Rotate and scale UV float rot = 3.14 * 0.6; float cosa = cos(rot); float sina = sin(rot); vec3 uv2 = vec3(rotate(uv.xy, cosa, sina) * scale, uv.z); vec4 col0 = texture(albedo_tex, uv); vec4 col1 = texture(albedo_tex, uv2); vec4 nrm0 = texture(normal_tex, uv); vec4 nrm1 = texture(normal_tex, uv2); //col0 = vec4(0.0, 0.5, 0.5, 1.0); // Highlights variations // Normals have to be rotated too since we are rotating the texture... // TODO Probably not the most efficient but understandable for now vec3 n = unpack_normal(nrm1); // Had to negate the Y axis for some reason. I never remember the myriad of conventions around n.xz = rotate(n.xz, cosa, -sina); nrm1 = pack_normal(n, nrm1.a); // Periodically alternate between the two versions using a warped checker pattern float t = 1.1 + 0.5 * sin(uv2.x * frequency + sin(uv.x) * 2.0) * cos(uv2.y * frequency + sin(uv.y) * 2.0); // Result in [0..2] t = smoothstep(sharpness, 2.0 - sharpness, t); // Using depth blend because classic alpha blending smoothes out details. out_normal = depth_blend2(nrm0, col0.a, nrm1, col1.a, t); return depth_blend2(col0, col0.a, col1, col1.a, t); } void vertex() { vec4 wpos = WORLD_MATRIX * vec4(VERTEX, 1); vec2 cell_coords = (u_terrain_inverse_transform * wpos).xz; // Must add a half-offset so that we sample the center of pixels, // otherwise bilinear filtering of the textures will give us mixed results (#183) cell_coords += vec2(0.5); // Normalized UV UV = cell_coords / vec2(textureSize(u_terrain_heightmap, 0)); // Height displacement float h = texture(u_terrain_heightmap, UV).r; VERTEX.y = h; wpos.y = h; vec3 base_ground_uv = vec3(cell_coords.x, h * WORLD_MATRIX[1][1], cell_coords.y); v_ground_uv = base_ground_uv / u_ground_uv_scale; // Putting this in vertex saves a fetch from the fragment shader, // which is good for performance at a negligible quality cost, // provided that geometry is a regular grid that decimates with LOD. // (downside is LOD will also decimate it, but it's not bad overall) vec4 tint = texture(u_terrain_colormap, UV); v_hole = tint.a; v_tint = tint.rgb; // Need to use u_terrain_normal_basis to handle scaling. // For some reason I also had to invert Z when sampling terrain normals... not sure why NORMAL = u_terrain_normal_basis * unpack_normal(texture(u_terrain_normalmap, UV)); v_distance_to_camera = distance(wpos.xyz, CAMERA_MATRIX[3].xyz); } void fragment() { if (v_hole < 0.5) { // TODO Add option to use vertex discarding instead, using NaNs discard; } vec3 terrain_normal_world = u_terrain_normal_basis * (unpack_normal(texture(u_terrain_normalmap, UV)) * vec3(1,1,-1)); terrain_normal_world = normalize(terrain_normal_world); vec3 normal = terrain_normal_world; float globalmap_factor = clamp((v_distance_to_camera - u_globalmap_blend_start) * u_globalmap_blend_distance, 0.0, 1.0); globalmap_factor *= globalmap_factor; // slower start, faster transition but far away vec3 global_albedo = texture(u_terrain_globalmap, UV).rgb; ALBEDO = global_albedo; // Doing this branch allows to spare a bunch of texture fetches for distant pixels. // Eventually, there could be a split between near and far shaders in the future, // if relevant on high-end GPUs if (globalmap_factor < 1.0) { vec4 high_indices; vec4 high_weights; get_splat_weights(UV, high_indices, high_weights); vec4 ab0, ab1, ab2, ab3; vec4 nr0, nr1, nr2, nr3; if (u_tile_reduction) { ab0 = texture_array_antitile( u_ground_albedo_bump_array, u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.x), nr0); ab1 = texture_array_antitile( u_ground_albedo_bump_array, u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.y), nr1); ab2 = texture_array_antitile( u_ground_albedo_bump_array, u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.z), nr2); ab3 = texture_array_antitile( u_ground_albedo_bump_array, u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.w), nr3); } else { ab0 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.x)); ab1 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.y)); ab2 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.z)); ab3 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.w)); nr0 = texture(u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.x)); nr1 = texture(u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.y)); nr2 = texture(u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.z)); nr3 = texture(u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.w)); } vec3 col0 = ab0.rgb * v_tint; vec3 col1 = ab1.rgb * v_tint; vec3 col2 = ab2.rgb * v_tint; vec3 col3 = ab3.rgb * v_tint; vec4 rough = vec4(nr0.a, nr1.a, nr2.a, nr3.a); vec3 normal0 = unpack_normal(nr0); vec3 normal1 = unpack_normal(nr1); vec3 normal2 = unpack_normal(nr2); vec3 normal3 = unpack_normal(nr3); vec4 w; // TODO An #ifdef macro would be nice! Or copy/paste everything in a different shader... if (u_depth_blending) { w = get_depth_blended_weights(high_weights, vec4(ab0.a, ab1.a, ab2.a, ab3.a)); } else { w = high_weights; } float w_sum = (w.r + w.g + w.b + w.a); ALBEDO = ( w.r * col0.rgb + w.g * col1.rgb + w.b * col2.rgb + w.a * col3.rgb) / w_sum; ROUGHNESS = ( w.r * rough.r + w.g * rough.g + w.b * rough.b + w.a * rough.a) / w_sum; vec3 ground_normal = /*u_terrain_normal_basis **/ ( w.r * normal0 + w.g * normal1 + w.b * normal2 + w.a * normal3) / w_sum; // If no splat textures are defined, normal vectors will default to (1,1,1), // which is incorrect, and causes the terrain to be shaded wrongly in some directions. // However, this should not be a problem to fix in the shader, // because there MUST be at least one splat texture set. //ground_normal = normalize(ground_normal); // TODO Make the plugin insert a default normalmap if it's empty // Combine terrain normals with detail normals (not sure if correct but looks ok) normal = normalize(vec3( terrain_normal_world.x + ground_normal.x, terrain_normal_world.y, terrain_normal_world.z + ground_normal.z)); normal = mix(normal, terrain_normal_world, globalmap_factor); ALBEDO = mix(ALBEDO, global_albedo, globalmap_factor); ROUGHNESS = mix(ROUGHNESS, 1.0, globalmap_factor); // if(count < 3) { // ALBEDO = vec3(1.0, 0.0, 0.0); // } // Show splatmap weights //ALBEDO = w.rgb; } // Highlight all pixels undergoing no splatmap at all // else { // ALBEDO = vec3(1.0, 0.0, 0.0); // } NORMAL = (INV_CAMERA_MATRIX * (vec4(normal, 0.0))).xyz; }