khanat-client/addons/zylann.hterrain/tools/generator/shaders/perlin_noise.shader

205 lines
5.8 KiB
GLSL

shader_type canvas_item;
uniform vec2 u_offset;
uniform float u_scale = 0.02;
uniform float u_base_height = 0.0;
uniform float u_height_range = 100.0;
uniform int u_seed;
uniform int u_octaves = 5;
uniform float u_roughness = 0.5;
uniform float u_curve = 1.0;
uniform float u_terrain_size = 513.0;
uniform float u_tile_size = 513.0;
uniform sampler2D u_additive_heightmap;
uniform float u_additive_heightmap_factor = 0.0;
uniform vec2 u_uv_offset;
uniform vec2 u_uv_scale = vec2(1.0, 1.0);
uniform float u_island_weight = 0.0;
// 0: smooth transition, 1: sharp transition
uniform float u_island_sharpness = 0.0;
// 0: edge is min height (island), 1: edge is max height (canyon)
uniform float u_island_height_ratio = 0.0;
// 0: round, 1: square
uniform float u_island_shape = 0.0;
////////////////////////////////////////////////////////////////////////////////
// Perlin noise source:
// https://github.com/curly-brace/Godot-3.0-Noise-Shaders
//
// GLSL textureless classic 2D noise \"cnoise\",
// with an RSL-style periodic variant \"pnoise\".
// Author: Stefan Gustavson (stefan.gustavson@liu.se)
// Version: 2011-08-22
//
// Many thanks to Ian McEwan of Ashima Arts for the
// ideas for permutation and gradient selection.
//
// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
// Distributed under the MIT license. See LICENSE file.
// https://github.com/stegu/webgl-noise
//
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x) {
return mod289(((x * 34.0) + 1.0) * x);
}
vec4 taylorInvSqrt(vec4 r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
vec2 fade(vec2 t) {
return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);
}
// Classic Perlin noise
float cnoise(vec2 P) {
vec4 Pi = floor(vec4(P, P)) + vec4(0.0, 0.0, 1.0, 1.0);
vec4 Pf = fract(vec4(P, P)) - vec4(0.0, 0.0, 1.0, 1.0);
Pi = mod289(Pi); // To avoid truncation effects in permutation
vec4 ix = Pi.xzxz;
vec4 iy = Pi.yyww;
vec4 fx = Pf.xzxz;
vec4 fy = Pf.yyww;
vec4 i = permute(permute(ix) + iy);
vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ;
vec4 gy = abs(gx) - 0.5 ;
vec4 tx = floor(gx + 0.5);
gx = gx - tx;
vec2 g00 = vec2(gx.x,gy.x);
vec2 g10 = vec2(gx.y,gy.y);
vec2 g01 = vec2(gx.z,gy.z);
vec2 g11 = vec2(gx.w,gy.w);
vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
g00 *= norm.x;
g01 *= norm.y;
g10 *= norm.z;
g11 *= norm.w;
float n00 = dot(g00, vec2(fx.x, fy.x));
float n10 = dot(g10, vec2(fx.y, fy.y));
float n01 = dot(g01, vec2(fx.z, fy.z));
float n11 = dot(g11, vec2(fx.w, fy.w));
vec2 fade_xy = fade(Pf.xy);
vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x);
float n_xy = mix(n_x.x, n_x.y, fade_xy.y);
return 2.3 * n_xy;
}
////////////////////////////////////////////////////////////////////////////////
float get_fractal_noise(vec2 uv) {
float scale = 1.0;
float sum = 0.0;
float amp = 0.0;
int octaves = u_octaves;
float p = 1.0;
uv.x += float(u_seed) * 61.0;
for (int i = 0; i < octaves; ++i) {
sum += p * cnoise(uv * scale);
amp += p;
scale *= 2.0;
p *= u_roughness;
}
float gs = sum / amp;
return gs;
}
// x is a ratio in 0..1
float get_island_curve(float x) {
return smoothstep(min(0.999, u_island_sharpness), 1.0, x);
// float exponent = 1.0 + 10.0 * u_island_sharpness;
// return pow(abs(x), exponent);
}
float smooth_union(float a, float b, float k) {
float h = clamp(0.5 + 0.5 * (b - a) / k, 0.0, 1.0);
return mix(b, a, h) - k * h * (1.0 - h);
}
float squareish_distance(vec2 a, vec2 b, float r, float s) {
vec2 v = b - a;
// TODO This is brute force but this is the first attempt that gave me a "rounded square" distance,
// where the "roundings" remained constant over distance (not the case with standard box SDF)
float da = -smooth_union(v.x+s, v.y+s, r)+s;
float db = -smooth_union(s-v.x, s-v.y, r)+s;
float dc = -smooth_union(s-v.x, v.y+s, r)+s;
float dd = -smooth_union(v.x+s, s-v.y, r)+s;
return max(max(da, db), max(dc, dd));
}
// This is too sharp
//float squareish_distance(vec2 a, vec2 b) {
// vec2 v = b - a;
// // Manhattan distance would produce a "diamond-shaped distance".
// // This gives "square-shaped" distance.
// return max(abs(v.x), abs(v.y));
//}
float get_island_distance(vec2 pos, vec2 center, float terrain_size) {
float rd = distance(pos, center);
float sd = squareish_distance(pos, center, terrain_size * 0.1, terrain_size);
return mix(rd, sd, u_island_shape);
}
// pos is in terrain space
float get_height(vec2 pos) {
float h = 0.0;
{
// Noise (0..1)
// Offset and scale for the noise itself
vec2 uv_noise = (pos / u_terrain_size + u_offset) * u_scale;
h = 0.5 + 0.5 * get_fractal_noise(uv_noise);
}
// Curve
{
h = pow(h, u_curve);
}
// Island
{
float terrain_size = u_terrain_size;
vec2 island_center = vec2(0.5 * terrain_size);
float island_height_ratio = 0.5 + 0.5 * u_island_height_ratio;
float island_distance = get_island_distance(pos, island_center, terrain_size);
float distance_ratio = clamp(island_distance / (0.5 * terrain_size), 0.0, 1.0);
float island_ratio = u_island_weight * get_island_curve(distance_ratio);
h = mix(h, island_height_ratio, island_ratio);
}
// Height remapping
{
h = u_base_height + h * u_height_range;
}
// Additive heightmap
{
h += u_additive_heightmap_factor * texture(u_additive_heightmap, pos / u_terrain_size).r;
}
return h;
}
void fragment() {
// Handle screen padding: transform UV back into generation space.
// This is in tile space actually...? it spans 1 unit across the viewport,
// and starts from 0 when tile (0,0) is generated.
// Maybe we could change this into world units instead?
vec2 uv_tile = (SCREEN_UV + u_uv_offset) * u_uv_scale;
float h = get_height(uv_tile * u_tile_size);
COLOR = vec4(h, h, h, 1.0);
}