khanat-code-old/code/nel/src/sound/driver/buffer.cpp

645 lines
18 KiB
C++
Raw Normal View History

2010-05-06 00:08:41 +00:00
// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "nel/sound/driver/buffer.h"
2010-05-06 00:08:41 +00:00
#include <nel/misc/fast_mem.h>
#include <nel/misc/stream.h>
namespace NLSOUND {
// for compatibility
void IBuffer::setFormat(TSampleFormat format, uint freq)
{
TBufferFormat bufferFormat;
uint8 channels;
uint8 bitsPerSample;
sampleFormatToBufferFormat(format, bufferFormat, channels, bitsPerSample);
setFormat(bufferFormat, channels, bitsPerSample, (uint32)freq);
}
// for compatibility, very lazy checks (assume it's set by old setFormat)
void IBuffer::getFormat(TSampleFormat& format, uint& freq) const
{
TBufferFormat bufferFormat;
uint8 channels;
uint8 bitsPerSample;
uint32 frequency;
getFormat(bufferFormat, channels, bitsPerSample, frequency);
freq = (uint)frequency;
bufferFormatToSampleFormat(bufferFormat, channels, bitsPerSample, format);
}
/// Convert old sample format to new buffer format
void IBuffer::sampleFormatToBufferFormat(TSampleFormat sampleFormat, TBufferFormat &bufferFormat, uint8 &channels, uint8 &bitsPerSample)
{
switch (sampleFormat)
{
case Mono8:
bufferFormat = FormatPcm;
channels = 1;
bitsPerSample = 8;
break;
case Mono16ADPCM:
bufferFormat = FormatDviAdpcm;
channels = 1;
bitsPerSample = 16;
break;
case Mono16:
bufferFormat = FormatPcm;
channels = 1;
bitsPerSample = 16;
break;
case Stereo8:
bufferFormat = FormatPcm;
channels = 2;
bitsPerSample = 8;
break;
case Stereo16:
bufferFormat = FormatPcm;
channels = 2;
bitsPerSample = 16;
break;
default:
bufferFormat = FormatUnknown;
channels = 0;
bitsPerSample = 0;
break;
}
}
/// Convert new buffer format to old sample format
void IBuffer::bufferFormatToSampleFormat(TBufferFormat bufferFormat, uint8 channels, uint8 bitsPerSample, TSampleFormat &sampleFormat)
{
switch (bufferFormat)
{
case FormatPcm:
switch (channels)
{
case 1:
switch (bitsPerSample)
{
case 8:
sampleFormat = Mono8;
break;
default:
sampleFormat = Mono16;
break;
}
break;
default:
switch (bitsPerSample)
{
case 8:
sampleFormat = Stereo8;
break;
default:
sampleFormat = Stereo16;
break;
}
break;
}
break;
case FormatDviAdpcm:
sampleFormat = Mono16ADPCM;
break;
case FormatUnknown:
default:
sampleFormat = (TSampleFormat)~0;
break;
}
}
uint IBuffer::getPCMSizeFromDuration(float duration, uint8 channels, uint8 bitsPerSample, uint32 frequency)
{
return (uint)(duration
* ((float)frequency)
* (((float)bitsPerSample) / 8.0f)
* ((float)channels));
}
float IBuffer::getDurationFromPCMSize(uint size, uint8 channels, uint8 bitsPerSample, uint32 frequency)
{
return ((float)size)
/ ((float)channels)
/ (((float)bitsPerSample) / 8.0f)
/ ((float)frequency);
}
const sint IBuffer::_IndexTable[16] =
{
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8,
};
const uint IBuffer::_StepsizeTable[89] =
{
7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};
void IBuffer::encodeADPCM(const sint16 *indata, uint8 *outdata, uint nbSample, TADPCMState &state)
{
const sint16 *inp = indata; /* Input buffer pointer */
uint8 *outp = outdata; /* output buffer pointer */
int val; /* Current input sample value */
int sign; /* Current adpcm sign bit */
int delta; /* Current adpcm output value */
int diff; /* Difference between val and valprev */
int valpred = state.PreviousSample; /* Predicted output value */
int vpdiff; /* Current change to valpred */
int index = state.StepIndex; /* Current step change index */
int step = _StepsizeTable[index]; /* Stepsize */
uint8 outputbuffer = 0; /* place to keep previous 4-bit value */
int bufferstep = 1; /* toggle between outputbuffer/output */
for ( ; nbSample > 0 ; nbSample-- )
{
val = *inp++;
/* Step 1 - compute difference with previous value */
diff = val - valpred;
sign = (diff < 0) ? 8 : 0;
if ( sign ) diff = (-diff);
/* Step 2 - Divide and clamp */
/* Note:
** This code *approximately* computes:
** delta = diff*4/step;
** vpdiff = (delta+0.5)*step/4;
** but in shift step bits are dropped. The net result of this is
** that even if you have fast mul/div hardware you cannot put it to
** good use since the fixup would be too expensive.
*/
delta = 0;
vpdiff = (step >> 3);
if ( diff >= step )
{
delta = 4;
diff -= step;
vpdiff += step;
}
step >>= 1;
if ( diff >= step )
{
delta |= 2;
diff -= step;
vpdiff += step;
}
step >>= 1;
if ( diff >= step )
{
delta |= 1;
vpdiff += step;
}
/* Step 3 - Update previous value */
if ( sign )
valpred -= vpdiff;
else
valpred += vpdiff;
/* Step 4 - Clamp previous value to 16 bits */
if ( valpred > 32767 )
{
nlwarning("over+ %d",valpred);
2010-05-06 00:08:41 +00:00
valpred = 32767;
}
else if ( valpred < -32768 )
{
nlwarning("over- %d",valpred);
2010-05-06 00:08:41 +00:00
valpred = -32768;
}
/* Step 5 - Assemble value, update index and step values */
delta |= sign;
index += _IndexTable[delta];
if ( index < 0 )
index = 0;
if ( index > 88 )
index = 88;
step = _StepsizeTable[index];
/* Step 6 - Output value */
if ( bufferstep )
{
outputbuffer = (delta << 4) & 0xf0;
}
else
{
*outp++ = (delta & 0x0f) | outputbuffer;
}
bufferstep = !bufferstep;
}
/* Output last step, if needed */
if ( !bufferstep )
*outp++ = outputbuffer;
state.PreviousSample = sint16(valpred);
state.StepIndex = uint8(index);
}
void IBuffer::decodeADPCM(const uint8 *indata, sint16 *outdata, uint nbSample, TADPCMState &state)
{
const uint8 *inp = indata; /* Input buffer pointer */
sint16 *outp = outdata; /* output buffer pointer */
int sign; /* Current adpcm sign bit */
int delta; /* Current adpcm output value */
int valpred = state.PreviousSample; /* Predicted value */
int vpdiff; /* Current change to valpred */
int index = state.StepIndex; /* Current step change index */
int step = _StepsizeTable[index]; /* Stepsize */
uint8 inputbuffer = 0; /* place to keep next 4-bit value */
int bufferstep = 0; /* toggle between inputbuffer/input */
for ( ; nbSample > 0 ; nbSample-- )
{
/* Step 1 - get the delta value */
if ( bufferstep )
{
delta = inputbuffer & 0xf;
}
else
{
inputbuffer = *inp++;
delta = (inputbuffer >> 4) & 0xf;
}
bufferstep = !bufferstep;
/* Step 2 - Find new index value (for later) */
index += _IndexTable[delta];
if ( index < 0 )
index = 0;
if ( index > 88 )
index = 88;
/* Step 3 - Separate sign and magnitude */
sign = delta & 8;
delta = delta & 7;
/* Step 4 - Compute difference and new predicted value */
/*
** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
** in adpcm_coder.
*/
vpdiff = step >> 3;
if ( delta & 4 )
vpdiff += step;
if ( delta & 2 )
vpdiff += step>>1;
if ( delta & 1 )
vpdiff += step>>2;
if ( sign )
valpred -= vpdiff;
else
valpred += vpdiff;
/* Step 5 - clamp output value */
if ( valpred > 32767 )
valpred = 32767;
else if ( valpred < -32768 )
valpred = -32768;
/* Step 6 - Update step value */
step = _StepsizeTable[index];
/* Step 7 - Output value */
*outp++ = sint16(valpred);
}
state.PreviousSample = sint16(valpred);
state.StepIndex = uint8(index);
}
static bool checkFourCC(const uint8 *left, const char *right)
{
return (left[0] == right[0] && left[1] == right[1] && left[2] == right[2] && left[3] == right[3]);
}
static bool readHeader(const uint8 *header, const char *fourcc, uint32 &size, const uint8 *&data)
{
memcpy(&size, header + 4, sizeof(uint32));
data = header + 8;
return (header[0] == fourcc[0] && header[1] == fourcc[1] && header[2] == fourcc[2] && header[3] == fourcc[3]);
}
static bool findChunk(const uint8 *src, uint32 srcSize, const char *fourcc, uint32 &size, const uint8 *&data)
{
uint32 offset = 0;
while (offset + 8 < srcSize)
{
bool found = readHeader(src + offset, fourcc, size, data);
if (found) return true;
offset += 8 + size;
}
return false;
}
/// Read a wav file. Data type uint8 is used as unspecified buffer format.
bool IBuffer::readWav(const uint8 *wav, uint size, std::vector<uint8> &result, TBufferFormat &bufferFormat, uint8 &channels, uint8 &bitsPerSample, uint32 &frequency)
{
#if 0
// Create mmio stuff
MMIOINFO mmioinfo;
memset(&mmioinfo, 0, sizeof(MMIOINFO));
mmioinfo.fccIOProc = FOURCC_MEM;
mmioinfo.pchBuffer = (HPSTR)wav;
mmioinfo.cchBuffer = size;
HMMIO hmmio = mmioOpen(NULL, &mmioinfo, MMIO_READ | MMIO_DENYWRITE);
if (!hmmio) { throw ESoundDriver("Failed to open the file"); }
// Find wave
MMCKINFO mmckinforiff;
memset(&mmckinforiff, 0, sizeof(MMCKINFO));
mmckinforiff.fccType = mmioFOURCC('W', 'A', 'V', 'E');
if (mmioDescend(hmmio, &mmckinforiff, NULL, MMIO_FINDRIFF) != MMSYSERR_NOERROR) { mmioClose(hmmio, 0); throw ESoundDriver("mmioDescend WAVE failed"); }
// Find fmt
MMCKINFO mmckinfofmt;
memset(&mmckinfofmt, 0, sizeof(MMCKINFO));
mmckinfofmt.ckid = mmioFOURCC('f', 'm', 't', ' ');
if (mmioDescend(hmmio, &mmckinfofmt, &mmckinforiff, MMIO_FINDCHUNK) != MMSYSERR_NOERROR) { mmioClose(hmmio, 0); throw ESoundDriver("mmioDescend fmt failed"); }
WAVEFORMATEX *wavefmt = (WAVEFORMATEX *)(&wav[mmckinfofmt.dwDataOffset]);
if (mmioAscend(hmmio, &mmckinfofmt, 0) != MMSYSERR_NOERROR) { mmioClose(hmmio, 0); throw ESoundDriver("mmioAscend fmt failed"); }
// Find data
MMCKINFO mmckinfodata;
memset(&mmckinfodata, 0, sizeof(MMCKINFO));
mmckinfodata.ckid = mmioFOURCC('d', 'a', 't', 'a');
if (mmioDescend(hmmio, &mmckinfodata, &mmckinforiff, MMIO_FINDCHUNK) != MMSYSERR_NOERROR) { mmioClose(hmmio, 0); throw ESoundDriver("mmioDescend data failed"); }
BYTE *wavedata = (BYTE *)(&wav[mmckinfodata.dwDataOffset]);
if (mmioAscend(hmmio, &mmckinfodata, 0) != MMSYSERR_NOERROR) { mmioClose(hmmio, 0); throw ESoundDriver("mmioAscend data failed"); }
// Close mmio
mmioClose(hmmio, 0);
// Copy stuff
bufferFormat = (TBufferFormat)wavefmt->wFormatTag;
channels = (uint8)wavefmt->nChannels;
bitsPerSample = (uint8)wavefmt->wBitsPerSample;
frequency = wavefmt->nSamplesPerSec;
result.resize(mmckinfodata.cksize);
NLMISC::CFastMem::memcpy(&result[0], wavedata, mmckinfodata.cksize);
return true;
#else
// read the RIFF header and check if it contains WAVE data
const uint8 *riffHeader = wav;
uint32 riffSize;
const uint8 *riffData;
if (!readHeader(riffHeader, "RIFF", riffSize, riffData))
{
nlwarning("WAV: Cannot find RIFF identifier");
return false;
}
if (riffSize <= 4)
{
nlwarning("WAV: Empty RIFF file");
return false;
}
if (!checkFourCC(riffData, "WAVE"))
{
nlwarning("WAV: RIFF file does not contain WAVE data");
return false;
}
uint32 waveSize = riffSize - 4;
const uint8 *waveData = riffData + 4;
// find the 'fmt ' chunk
uint32 fmtSize;
const uint8 *fmtData;
if (!findChunk(waveData, waveSize, "fmt ", fmtSize, fmtData))
{
nlwarning("WAV: Cannot find 'fmt ' chunk");
return false;
}
if (fmtSize < 16)
{
nlwarning("WAV: The 'fmt ' chunk is incomplete");
return false;
}
// find the 'data' chunk
uint32 dataSize;
const uint8 *dataData;
if (!findChunk(waveData, waveSize, "data", dataSize, dataData))
{
nlwarning("WAV: Cannot find 'data' chunk");
return false;
}
if (dataData + dataSize > wav + size)
{
uint32 cut = (uint32)((dataData + dataSize) - (wav + size));
nlwarning("WAV: Oversize 'data' chunk with dataSize %u and wav size %u, cutting %u bytes", (uint32)dataSize, (uint32)size, (uint32)cut);
dataSize -= cut;
}
// read the 'fmt ' chunk
uint16 fmtFormatTag; // 0-1
memcpy(&fmtFormatTag, fmtData + 0, sizeof(uint16));
uint16 fmtChannels; // 2-3
memcpy(&fmtChannels, fmtData + 2, sizeof(uint16));
uint32 fmtSamplesPerSec; // 4-7
memcpy(&fmtSamplesPerSec, fmtData + 4, sizeof(uint32));
//uint32 fmtAvgBytesPerSec; // 8-11
//uint16 fmtBlockAlign; // 12-13
uint16 fmtBitsPerSample; // 14-15
memcpy(&fmtBitsPerSample, fmtData + 14, sizeof(uint16));
//uint16 fmtExSize; // 16-17 // only if fmtSize > 16
bufferFormat = (TBufferFormat)fmtFormatTag;
channels = (uint8)fmtChannels;
bitsPerSample = (uint8)fmtBitsPerSample;
frequency = fmtSamplesPerSec;
result.resize(dataSize);
NLMISC::CFastMem::memcpy(&result[0], dataData, dataSize);
return true;
#endif
}
/// Write a wav file. Data type uint8 does not imply a buffer of any format.
bool IBuffer::writeWav(const uint8 *buffer, uint size, TBufferFormat bufferFormat, uint8 channels, uint8 bitsPerSample, uint32 frequency, NLMISC::IStream &out)
{
nlassert(!out.isReading());
const uint32 headerSize = 8; // 32 TAG + 32 SIZE
uint32 fmtSize = 16;
uint32 dataSize = (uint32)size;
// create riff header
const char *riffFourCC = "RIFF"; // Chunk FourCC
uint32 riffSize = 4 // Type FourCC
+ headerSize + fmtSize // fmt Chunk
+ headerSize + dataSize; // data Chunk
// create riff data
const char *waveFourCC = "WAVE"; // Type FourCC
// write riff chunk header
out.serialBuffer(const_cast<uint8 *>(static_cast<const uint8 *>(static_cast<const void *>(riffFourCC))), 4);
out.serial(riffSize);
// write riff chunk data
out.serialBuffer(const_cast<uint8 *>(static_cast<const uint8 *>(static_cast<const void *>(waveFourCC))), 4);
// riff subchunks
// create format header
const char *fmtFourCC = "fmt ";
// create format data
uint16 fmtFormatTag = (uint16)bufferFormat; // 0-1
uint16 fmtChannels = (uint16)channels; // 2-3
uint32 fmtSamplesPerSec = (uint32)frequency; // 4-7
uint16 fmtBitsPerSample = (uint16)bitsPerSample; // 14-15
uint16 fmtBlockAlign = fmtChannels * fmtBitsPerSample / 8; // 12-13
uint32 fmtAvgBytesPerSec = fmtSamplesPerSec * fmtBlockAlign; // 8-11
// uint16 fmtExSize; // 16-17 // only if fmtSize > 16
// write format chunk header
out.serialBuffer(const_cast<uint8 *>(static_cast<const uint8 *>(static_cast<const void *>(fmtFourCC))), 4);
out.serial(fmtSize);
// write format chunk data
out.serial(fmtFormatTag);
out.serial(fmtChannels);
out.serial(fmtSamplesPerSec);
out.serial(fmtAvgBytesPerSec);
out.serial(fmtBlockAlign);
out.serial(fmtBitsPerSample);
// create data header
const char *dataFourCC = "data";
// write data chunk header
out.serialBuffer(const_cast<uint8 *>(static_cast<const uint8 *>(static_cast<const void *>(dataFourCC))), 4);
out.serial(dataSize);
// write data chunk data
out.serialBuffer(const_cast<uint8 *>(buffer), size);
return true;
}
/// Convert buffer data to 16bit Mono PCM.
bool IBuffer::convertToMono16PCM(const uint8 *buffer, uint size, std::vector<sint16> &result, TBufferFormat bufferFormat, uint8 channels, uint8 bitsPerSample)
{
if (size == 0 || channels == 0 || bitsPerSample == 0) return false;
switch (bufferFormat)
{
case FormatPcm:
{
result.resize((std::vector<sint16>::size_type)(((uint64)size / (uint64)channels) * 8UL / (uint64)bitsPerSample));
uint samples = (uint)result.size();
switch (bitsPerSample)
{
case 8:
{
const sint8 *src8 = (const sint8 *)(const void *)buffer;
uint j = 0;
for (uint i = 0; i < samples; ++i)
{
sint32 sample = 0;
for (uint k = 0; k < channels; ++k)
sample += (sint32)src8[j + k];
j += channels;
sample *= 256;
sample /= channels;
result[i] = (sint16)sample;
}
}
return true;
case 16:
{
const sint16 *src16 = (const sint16 *)(const void *)buffer;
uint j = 0;
for (uint i = 0; i < samples; ++i)
{
sint32 sample = 0;
for (uint k = 0; k < channels; ++k)
sample += (sint32)src16[j + k];
j += channels;
sample /= channels;
result[i] = (sint16)sample;
}
}
return true;
case 32:
{
const sint32 *src32 = (const sint32 *)(const void *)buffer;
uint j = 0;
for (uint i = 0; i < samples; ++i)
{
sint64 sample = 0;
for (uint k = 0; k < channels; ++k)
sample += (sint64)src32[j + k];
j += channels;
sample /= 65536;
sample /= channels;
result[i] = (sint16)sample;
}
}
return true;
default:
return false;
}
}
return true;
case FormatDviAdpcm:
{
uint samples = size * 2;
result.resize(samples);
TADPCMState state;
state.PreviousSample = 0;
state.StepIndex = 0;
decodeADPCM(buffer, &result[0], samples, state);
}
return true;
case FormatUnknown:
default:
return false;
}
}
/// Convert 16bit Mono PCM buffer data to ADPCM.
bool IBuffer::convertMono16PCMToMonoADPCM(const sint16 *buffer, uint samples, std::vector<uint8> &result)
{
if (samples == 0) return false;
// Allocate ADPCM dest
samples &= 0xfffffffe;
result.resize(samples / 2);
// Encode
TADPCMState state;
state.PreviousSample = 0;
state.StepIndex = 0;
encodeADPCM(buffer, &result[0], samples, state);
return true;
}
} // NLSOUND