// Ryzom - MMORPG Framework
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see .
#include "simulation_random.h"
#include "nel/misc/debug.h"
//
// Implementation of a random number generator that draws from a
// gaussian distribution. The underlying (uniform deviate)
// pseudorandom number generator is the Park and Miller "Minimum
// standard" generator with Bayes-Durham shuffle
//
// Copyright (c) 2001 Wesley H. Huang. All rights reserved.
//
#include
//#include
// default random generator seed (nothing special about this number
// except that it's not 0)
const long defaultSeed = 18846224;
long pmRandGenSeed = defaultSeed;
// set the seed (optional)
void pmRandSeed(long s)
{
if (s == 0) // can't use 0 as a seed
pmRandGenSeed = defaultSeed; // use the default
else
pmRandGenSeed = s;
}
// parameters for the random number generator
const long a = 16807;
const long m = 2147483647;
const long q = m/a; // 127773
const long r = m % a; // 2836
const long pmRandMax = m;
// Park and Miller's "Minimal Standard" generator using Schrage's
// method to do the computation in 32 bit arithmetic without overflow.
//
// This is a multiplicative congruential generator: I_{j+1} = a I_j mod m
// using the above constants (which are very carefully picked).
//
// The result is an integer between 1 and m-1 inclusive.
//
// Reference: Numerical Recipes in C, 2nd ed, pg 278.
long pmRand()
{
long k = pmRandGenSeed/q;
pmRandGenSeed = a*(pmRandGenSeed - k*q) - r*k;
if (pmRandGenSeed < 0)
pmRandGenSeed += m;
return pmRandGenSeed;
}
// the Bayes-Durham shuffle
long pmRandShuffle()
{
const int size = 32;
const long div = 1 + (pmRandMax-1)/size;
static bool initialized = false;
static long rn[size];
static long next;
int index;
if (!initialized)
{
int k;
for (k= 0; k < size; k++) // warm up
pmRand();
for (k= 0; k < size; k++) // fill table
rn[k] =pmRand();
next = pmRand();
initialized = true;
}
index = next/div; // find out which table entry to use next
next = rn[index]; // that random nember determines the next index
rn[index] = pmRand(); // refill the table slot
return next; // return the random number
}
//
// This is a simple but pretty good random number generator.
//
// Returns a floating point number in (0.0, 1.0)
float myRand()
{
return pmRandShuffle()/(pmRandMax + 1.0f);
}
void myRandSeed(long s)
{
pmRandSeed(s);
}
// returns a number drawn from the exponential distribution with the given mean
float exponential( float mean )
{
float uniform = myRand();
nlassert( uniform < 1.0f );
float exponential = -logf( 1.0f - uniform ) * mean;
// nldebug( "uniform rand: %.2f, exponential rand: %.2f", uniform, exponential );
return exponential;
}
// returns a number drawn from a gaussian distribution with the
// specified mean and standard deviation
float gaussian(float mean, float stdev)
{
static bool cached = false;
static float extra; // the extra number from a 0 mean unit stdev gaussian
if (cached)
{
cached = false;
return extra*stdev + mean;
}
else
{
// pick a random point in the unit circle (excluding the origin)
float a,b,c;
do
{
a = 2.0f*myRand()-1.0f;
b = 2.0f*myRand()-1.0f;
c = a*a + b*b;
}
while (c >= 1.0f || c == 0.0);
// transform it into two values drawn from a gaussian
float t = sqrtf(-2.0f*logf(c)/c);
extra = t*a;
cached = true;
return t*b*stdev + mean;
}
}