khanat-client/addons/zylann.hterrain/shaders/multisplat16.shader

369 lines
12 KiB
GLSL

shader_type spatial;
// WIP
// This shader uses a texture array with multiple splatmaps, allowing up to 16 textures.
// Only the 4 textures having highest blending weight are sampled.
uniform sampler2D u_terrain_heightmap;
uniform sampler2D u_terrain_normalmap;
// I had to remove `hint_albedo` from colormap because it makes sRGB conversion kick in,
// which snowballs to black when doing GPU painting on that texture...
uniform sampler2D u_terrain_colormap;
uniform sampler2D u_terrain_splatmap;
uniform sampler2D u_terrain_splatmap_1;
uniform sampler2D u_terrain_splatmap_2;
uniform sampler2D u_terrain_splatmap_3;
uniform sampler2D u_terrain_globalmap : hint_albedo;
uniform mat4 u_terrain_inverse_transform;
uniform mat3 u_terrain_normal_basis;
uniform sampler2DArray u_ground_albedo_bump_array : hint_albedo;
uniform sampler2DArray u_ground_normal_roughness_array;
uniform float u_ground_uv_scale = 20.0;
uniform bool u_depth_blending = true;
uniform float u_globalmap_blend_start;
uniform float u_globalmap_blend_distance;
uniform bool u_tile_reduction = false;
varying float v_hole;
varying vec3 v_tint;
varying vec2 v_terrain_uv;
varying vec3 v_ground_uv;
varying float v_distance_to_camera;
// TODO Can't put this in a constant: https://github.com/godotengine/godot/issues/44145
//const int TEXTURE_COUNT = 16;
vec3 unpack_normal(vec4 rgba) {
vec3 n = rgba.xzy * 2.0 - vec3(1.0);
// Had to negate Z because it comes from Y in the normal map,
// and OpenGL-style normal maps are Y-up.
n.z *= -1.0;
return n;
}
vec4 pack_normal(vec3 n, float a) {
n.z *= -1.0;
return vec4((n.xzy + vec3(1.0)) * 0.5, a);
}
// Blends weights according to the bump of detail textures,
// so for example it allows to have sand fill the gaps between pebbles
vec4 get_depth_blended_weights(vec4 splat, vec4 bumps) {
float dh = 0.2;
vec4 h = bumps + splat;
// TODO Keep improving multilayer blending, there are still some edge cases...
// Mitigation: nullify layers with near-zero splat
h *= smoothstep(0, 0.05, splat);
vec4 d = h + dh;
d.r -= max(h.g, max(h.b, h.a));
d.g -= max(h.r, max(h.b, h.a));
d.b -= max(h.g, max(h.r, h.a));
d.a -= max(h.g, max(h.b, h.r));
return clamp(d, 0, 1);
}
vec3 get_triplanar_blend(vec3 world_normal) {
vec3 blending = abs(world_normal);
blending = normalize(max(blending, vec3(0.00001))); // Force weights to sum to 1.0
float b = blending.x + blending.y + blending.z;
return blending / vec3(b, b, b);
}
vec4 texture_triplanar(sampler2D tex, vec3 world_pos, vec3 blend) {
vec4 xaxis = texture(tex, world_pos.yz);
vec4 yaxis = texture(tex, world_pos.xz);
vec4 zaxis = texture(tex, world_pos.xy);
// blend the results of the 3 planar projections.
return xaxis * blend.x + yaxis * blend.y + zaxis * blend.z;
}
void get_splat_weights(vec2 uv, out vec4 out_high_indices, out vec4 out_high_weights) {
vec4 ew0 = texture(u_terrain_splatmap, uv);
vec4 ew1 = texture(u_terrain_splatmap_1, uv);
vec4 ew2 = texture(u_terrain_splatmap_2, uv);
vec4 ew3 = texture(u_terrain_splatmap_3, uv);
float weights[16] = {
ew0.r, ew0.g, ew0.b, ew0.a,
ew1.r, ew1.g, ew1.b, ew1.a,
ew2.r, ew2.g, ew2.b, ew2.a,
ew3.r, ew3.g, ew3.b, ew3.a
};
// float weights_sum = 0.0;
// for (int i = 0; i < 16; ++i) {
// weights_sum += weights[i];
// }
// for (int i = 0; i < 16; ++i) {
// weights_sum /= weights_sum;
// }
// weights_sum=1.1;
// Now we have to pick the 4 highest weights and use them to blend textures.
// Using arrays because Godot's shader version doesn't support dynamic indexing of vectors
// TODO We should not need to initialize, but apparently we don't always find 4 weights
int high_indices_array[4] = {0, 0, 0, 0};
float high_weights_array[4] = {0.0, 0.0, 0.0, 0.0};
int count = 0;
// We know weights are supposed to be normalized.
// That means the highest value of the pivot above which we can find 4 results
// is 1.0 / 4.0. However that would mean exactly 4 textures have exactly that weight,
// which is very unlikely. If we consider 1.0 / 5.0, we are a bit more likely to find
// 4 results, and finding 5 results remains almost impossible.
float pivot = /*weights_sum*/1.0 / 5.0;
for (int i = 0; i < 16; ++i) {
if (weights[i] > pivot) {
high_weights_array[count] = weights[i];
high_indices_array[count] = i;
weights[i] = 0.0;
++count;
}
}
while (count < 4 && pivot > 0.0) {
float max_weight = 0.0;
int max_index = 0;
for (int i = 0; i < 16; ++i) {
if (/*weights[i] <= pivot && */weights[i] > max_weight) {
max_weight = weights[i];
max_index = i;
weights[i] = 0.0;
}
}
high_indices_array[count] = max_index;
high_weights_array[count] = max_weight;
++count;
pivot = max_weight;
}
out_high_weights = vec4(
high_weights_array[0], high_weights_array[1],
high_weights_array[2], high_weights_array[3]);
out_high_indices = vec4(
float(high_indices_array[0]), float(high_indices_array[1]),
float(high_indices_array[2]), float(high_indices_array[3]));
out_high_weights /=
out_high_weights.r + out_high_weights.g + out_high_weights.b + out_high_weights.a;
}
vec4 depth_blend2(vec4 a_value, float a_bump, vec4 b_value, float b_bump, float t) {
// https://www.gamasutra.com
// /blogs/AndreyMishkinis/20130716/196339/Advanced_Terrain_Texture_Splatting.php
float d = 0.1;
float ma = max(a_bump + (1.0 - t), b_bump + t) - d;
float ba = max(a_bump + (1.0 - t) - ma, 0.0);
float bb = max(b_bump + t - ma, 0.0);
return (a_value * ba + b_value * bb) / (ba + bb);
}
vec2 rotate(vec2 v, float cosa, float sina) {
return vec2(cosa * v.x - sina * v.y, sina * v.x + cosa * v.y);
}
vec4 texture_array_antitile(sampler2DArray albedo_tex, sampler2DArray normal_tex, vec3 uv,
out vec4 out_normal) {
float frequency = 2.0;
float scale = 1.3;
float sharpness = 0.7;
// Rotate and scale UV
float rot = 3.14 * 0.6;
float cosa = cos(rot);
float sina = sin(rot);
vec3 uv2 = vec3(rotate(uv.xy, cosa, sina) * scale, uv.z);
vec4 col0 = texture(albedo_tex, uv);
vec4 col1 = texture(albedo_tex, uv2);
vec4 nrm0 = texture(normal_tex, uv);
vec4 nrm1 = texture(normal_tex, uv2);
//col0 = vec4(0.0, 0.5, 0.5, 1.0); // Highlights variations
// Normals have to be rotated too since we are rotating the texture...
// TODO Probably not the most efficient but understandable for now
vec3 n = unpack_normal(nrm1);
// Had to negate the Y axis for some reason. I never remember the myriad of conventions around
n.xz = rotate(n.xz, cosa, -sina);
nrm1 = pack_normal(n, nrm1.a);
// Periodically alternate between the two versions using a warped checker pattern
float t = 1.1 + 0.5
* sin(uv2.x * frequency + sin(uv.x) * 2.0)
* cos(uv2.y * frequency + sin(uv.y) * 2.0); // Result in [0..2]
t = smoothstep(sharpness, 2.0 - sharpness, t);
// Using depth blend because classic alpha blending smoothes out details.
out_normal = depth_blend2(nrm0, col0.a, nrm1, col1.a, t);
return depth_blend2(col0, col0.a, col1, col1.a, t);
}
void vertex() {
vec4 wpos = WORLD_MATRIX * vec4(VERTEX, 1);
vec2 cell_coords = (u_terrain_inverse_transform * wpos).xz;
// Must add a half-offset so that we sample the center of pixels,
// otherwise bilinear filtering of the textures will give us mixed results (#183)
cell_coords += vec2(0.5);
// Normalized UV
UV = cell_coords / vec2(textureSize(u_terrain_heightmap, 0));
// Height displacement
float h = texture(u_terrain_heightmap, UV).r;
VERTEX.y = h;
wpos.y = h;
vec3 base_ground_uv = vec3(cell_coords.x, h * WORLD_MATRIX[1][1], cell_coords.y);
v_ground_uv = base_ground_uv / u_ground_uv_scale;
// Putting this in vertex saves a fetch from the fragment shader,
// which is good for performance at a negligible quality cost,
// provided that geometry is a regular grid that decimates with LOD.
// (downside is LOD will also decimate it, but it's not bad overall)
vec4 tint = texture(u_terrain_colormap, UV);
v_hole = tint.a;
v_tint = tint.rgb;
// Need to use u_terrain_normal_basis to handle scaling.
// For some reason I also had to invert Z when sampling terrain normals... not sure why
NORMAL = u_terrain_normal_basis * unpack_normal(texture(u_terrain_normalmap, UV));
v_distance_to_camera = distance(wpos.xyz, CAMERA_MATRIX[3].xyz);
}
void fragment() {
if (v_hole < 0.5) {
// TODO Add option to use vertex discarding instead, using NaNs
discard;
}
vec3 terrain_normal_world =
u_terrain_normal_basis * (unpack_normal(texture(u_terrain_normalmap, UV)) * vec3(1,1,-1));
terrain_normal_world = normalize(terrain_normal_world);
vec3 normal = terrain_normal_world;
float globalmap_factor = clamp((v_distance_to_camera - u_globalmap_blend_start)
* u_globalmap_blend_distance, 0.0, 1.0);
globalmap_factor *= globalmap_factor; // slower start, faster transition but far away
vec3 global_albedo = texture(u_terrain_globalmap, UV).rgb;
ALBEDO = global_albedo;
// Doing this branch allows to spare a bunch of texture fetches for distant pixels.
// Eventually, there could be a split between near and far shaders in the future,
// if relevant on high-end GPUs
if (globalmap_factor < 1.0) {
vec4 high_indices;
vec4 high_weights;
get_splat_weights(UV, high_indices, high_weights);
vec4 ab0, ab1, ab2, ab3;
vec4 nr0, nr1, nr2, nr3;
if (u_tile_reduction) {
ab0 = texture_array_antitile(
u_ground_albedo_bump_array, u_ground_normal_roughness_array,
vec3(v_ground_uv.xz, high_indices.x), nr0);
ab1 = texture_array_antitile(
u_ground_albedo_bump_array, u_ground_normal_roughness_array,
vec3(v_ground_uv.xz, high_indices.y), nr1);
ab2 = texture_array_antitile(
u_ground_albedo_bump_array, u_ground_normal_roughness_array,
vec3(v_ground_uv.xz, high_indices.z), nr2);
ab3 = texture_array_antitile(
u_ground_albedo_bump_array, u_ground_normal_roughness_array,
vec3(v_ground_uv.xz, high_indices.w), nr3);
} else {
ab0 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.x));
ab1 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.y));
ab2 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.z));
ab3 = texture(u_ground_albedo_bump_array, vec3(v_ground_uv.xz, high_indices.w));
nr0 = texture(u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.x));
nr1 = texture(u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.y));
nr2 = texture(u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.z));
nr3 = texture(u_ground_normal_roughness_array, vec3(v_ground_uv.xz, high_indices.w));
}
vec3 col0 = ab0.rgb * v_tint;
vec3 col1 = ab1.rgb * v_tint;
vec3 col2 = ab2.rgb * v_tint;
vec3 col3 = ab3.rgb * v_tint;
vec4 rough = vec4(nr0.a, nr1.a, nr2.a, nr3.a);
vec3 normal0 = unpack_normal(nr0);
vec3 normal1 = unpack_normal(nr1);
vec3 normal2 = unpack_normal(nr2);
vec3 normal3 = unpack_normal(nr3);
vec4 w;
// TODO An #ifdef macro would be nice! Or copy/paste everything in a different shader...
if (u_depth_blending) {
w = get_depth_blended_weights(high_weights, vec4(ab0.a, ab1.a, ab2.a, ab3.a));
} else {
w = high_weights;
}
float w_sum = (w.r + w.g + w.b + w.a);
ALBEDO = (
w.r * col0.rgb +
w.g * col1.rgb +
w.b * col2.rgb +
w.a * col3.rgb) / w_sum;
ROUGHNESS = (
w.r * rough.r +
w.g * rough.g +
w.b * rough.b +
w.a * rough.a) / w_sum;
vec3 ground_normal = /*u_terrain_normal_basis **/ (
w.r * normal0 +
w.g * normal1 +
w.b * normal2 +
w.a * normal3) / w_sum;
// If no splat textures are defined, normal vectors will default to (1,1,1),
// which is incorrect, and causes the terrain to be shaded wrongly in some directions.
// However, this should not be a problem to fix in the shader,
// because there MUST be at least one splat texture set.
//ground_normal = normalize(ground_normal);
// TODO Make the plugin insert a default normalmap if it's empty
// Combine terrain normals with detail normals (not sure if correct but looks ok)
normal = normalize(vec3(
terrain_normal_world.x + ground_normal.x,
terrain_normal_world.y,
terrain_normal_world.z + ground_normal.z));
normal = mix(normal, terrain_normal_world, globalmap_factor);
ALBEDO = mix(ALBEDO, global_albedo, globalmap_factor);
ROUGHNESS = mix(ROUGHNESS, 1.0, globalmap_factor);
// if(count < 3) {
// ALBEDO = vec3(1.0, 0.0, 0.0);
// }
// Show splatmap weights
//ALBEDO = w.rgb;
}
// Highlight all pixels undergoing no splatmap at all
// else {
// ALBEDO = vec3(1.0, 0.0, 0.0);
// }
NORMAL = (INV_CAMERA_MATRIX * (vec4(normal, 0.0))).xyz;
}